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An arithmetical function is a mapping from the positive integers to the complex num
bers . The more interesting ones involve some number-theoretic property, such as 

r (n) = the number of positive divisors of n , 
CJ (n) = the sum of the positive divisors of  n , and 
<P (n) = the number of positive integers k :S n such that gcd(k , n) = 1 .  

A typical introductory number theory book includes a chapter on these functions, 
showing that they form a commutative ring with unity under pointwise addition 

(f + g) (n) = f(n) + g(n) 
and Dirichlet multiplication 

(f * g)(n) = L f(d)g(njd). 
din 

Here the sum is taken over all positive integer divisors d of n . This somewhat surpris
ing choice of a product is quite fruitful, allowing one to obtain interesting number
theoretic formulas from simple computations in the ring. In particular, the useful 
functions mentioned above can all be expressed in terms of two simple elements of 
this ring. 

In this MAGAZINE, Berberian [2] discussed (among other things) the group of units 
of this ring. He showed that r, CJ, and <P can be expressed in terms of two very simple 
functions and proved that those two functions are linearly independent. In this article 
we e xte nd his pair to a n  u ncou ntably i nfinite set. In the process, we prese nt a ns wers 
to other questions posed in his article, including a descriptio n of the structure of the 
group of units . 

In the interest of accessibility, most of the discussion is con fined to real-valued 
arithmetical functions .  Except for a bit of abelian group theory, the algebraic ideas 
come from introductory linear algebra and abstract algebra. For many readers the only 
novel concept will be Bell series, a powerful tool developed by E. T. Bell in the early 
twentieth century. 

NOTATION . The symbols IF', N, Z, Q, ffi., C will denote the positive integers, non
negative integers, integers, rational numbers, real numbers, and complex numbers, re
spectively. 

Background 

We develop some basic principles of the ring of arithmetical functions. Our presenta
tion is self -contained, but the reader desiring more information may consult various 
introductory number theory books, such as Niven and Zuckerman [6, Chapter 4] or 
Rosen [7, Chapter 7] . Apostol [1 , Chapter 2] is particularly helpful. 
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First, the Dirichlet product can also be expressed as 

(f * g) (n) = L f(d ,)g (d2) ( 1 ) 
d1dz=n 

where the sum extends over all ordered pairs of positive divisors of n whose product 
is n . Extending this notation, the associative law states that 

(! * (g * h)) (n) = (Cf *g) * h) (n) = L f(d1 )g (d2)h (d3) . 
d1dzd3=n 

The Dirichlet product is particularly easy to evaluate at a prime power, pk : 

k 
u * g) (pk) = L t<Pi )g (pk-i ) . 

i=O 

The multiplicative identity of the ring is 

{ 1 ifn = 1  I (n) = 
0 otherwise. 

To determine the group of units, we ask which arithmetical functions are invertible, in 
the sense of the Dirichlet product. As long as f( l ) "I- 0, we can obtain f- 1 inductively: 
/- 1 ( 1 ) = 1 /f ( l ) and, when n > 1 ,  

f- 1 (n) = --1- L f- 1 (d)f(n/d) . / ( 1 ) din 
d<n 

Again, the formula sim pli fies for a prime power, pk , k > 0 : 

(2) 

Scalar multiplication is de fined as usual : (cf) (n) = cf(n) . Equation ( 1 ) makes it clear 
that (cf) * g = f * (cg) = c(f *g) . 

Of particular interest are the functions that are multiplicative, those having the prop
erties that f( l ) = 1 and f(mn) = f(m)f (n) whenever gcd(m , n) = 1 . The functions 
I, r, a, and ¢ are all multiplicative. The multiplicative functions form a subgroup of 
the group of units [1 ,  Section 2. 1 0] .  A multiplicative function is uniquely determined 
by its values on the prime powers : if p1 , • • •  , p ,  are distinct primes, then 

r 

J(p�l • • • p �r) =IT J(p�i) .  
i= l 

E XAMPLE . For each real a, the function Sa de fined by sa(n) = n a is multiplica
tive. In fact, it is totally multiplicative or completely mutiplicative in that sa(mn) = 

sa(m) sa(n) for all m , n E JP>. Then s;;' must also be multiplicative, so s;;1 ( 1 ) = 1 
and it suffices to compute s;;' (pk ) ,  where p is a prime and k is a positive integer. 
From (2) we have s;;'(p) = - s;;1 ( 1 ) sa(P) = -pa. A routine induction, again us
ing (2), shows that s;;1 (pk) = 0 when k � 2. Now suppose that n > 1 has prime fac-
torization n = p� 1 • • • p�r. Then s;;' (n) = fl;=, s;;' (p7 ;) .  This is zero if any one of the 
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k; exceeds one. If each k; = 1 we have n = n;=l Pi and c,;1 (n) = n;=l c,;1 (p; ) = 

n;=l (-p n = ( - 1 )' n a. In summary, we have proved { 1 if n = 1  
c.; 1 ( n) = ( - 1  y n a if n is the product of r distinct primes 

0 otherwise. 

The functions e, gh and J.t Note that c0 (n) = 1 and c1 (n) = n for all n . These 
functions play a key role; in fact, co and c1 are the two functions featured by Berberian 
in his article [2] . The function co occurs so often that we let c = c0 • Despite their 
importance, there is little agreement on notation, as seen in Table 1 .  

TAB LE 1 :  Notat ion for I, e, and e1 

Author(s) I e Bl 
Apostol [1] I u N 

Berberian [2] u y e 
McCarthy [5] 8 � �I 
Niven and Zuckerman [6] I u E 
Rosen [7] v 

We can express r, a , and ¢ in terms of c and c1 using the following idea: Suppose 
f is an arithmetical function and let 

F(n) = L f (d) = L f(d) c(njd) = (f * c) (n) , 
din din 

showing that F = f *c. Since r(n) = Ldln 1 and a (n) = Ldln d we have 

There is a pretty equation involving Euler's  ¢function, the third on our initial list of 
examples: 

L¢ (d) = n .  (3) 
din 

To see this, note that ¢ (d) equals the number of reduced fractions having denominator 
d in the interval (0, 1 ] .  If we partition the set { l j n , 2/n ,  . . .  , njn } according to the 
denominators of the fractions in reduced form, the sum adds the cardinalities of these 
equivalence classes, and this total must be n .  In terms of the Dirichlet product, (3) says 

¢ * c = c1 , or 

A, - 1 '+' = c1 *c . 

Thus r, a , and¢ are each expressible in terms of c and c1 . 
The Mobius function f.L = c- 1 appears often, as in¢ = c1 * f.L. Taking a =  0 in the 

formula for c,;-1 yields { 1 if n = 1  
JL(n) = (- 1 )' if n is the product of r distinct primes 

0 otherwise. 
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The Mobius inversion formula [1, p. 32] states that if F(n) = Ldln f (d) then f(n) = 
Ldln F(d)JL(njd) . In our setting this reduces to the assertion that ifF = f * 8 then 
f = F * 8-I . 

The group of units 

Our initial goal is to obtain an algebraic description of the group of units . We be
gin by showing it is the direct sum of three subgroups :  the scalars, the multiplicative 
functions, and a group to be defined momentarily. 

First we split off the scalar functions. 
Let U = {f I f ( l ) =/= 0} , U1 = {f I f ( l ) = 1 } , and C = {c/ I c E R c =/= 0} . 

Then C and U1 are subgroups of U and C n U1 = { / } . If f E U and c = f( l ) then 
f = (cl) *(!f) with cl E C and! f E U1 . Thus U = C E9 U1 . c c 

There are many important functions for which f ( 1 ) =/= 1 .  
EXAMPLE.  (SUMS O F  SQUARES)  Hardy and Wright [4, p .  3 14] used rk(n) to de

note the number of k-tuples (a! ' a2 , . . .  ' a k) of integers for which a r  + a � + . . .  + 
a f  = n . The two most familiar cases are r2 and r4 • It turns out that each is a scalar 
times a multiplicative function. In the first case, r2 (n) = 4 Ldln x(d) , where xis the 
completely multiplicative function given by 

{ 0 if n is even x(n) = (- l ) <n- l )/2 if n is odd 

[4, p. 24 1 ] .  Thus r2 = 4/ * x * 8, and x * 8 is multiplicative. 

Lagrange showed that every positive integer is expressible as the sum of four 
squares , so r4 is always positive . One formula is 

r4 (n) = 8 L d 
dln,4Yd 

[4, p. 3 14] . Defining the multiplicative function f by 

{ 0 if 4 1 n  f(n) = n otherwise , 

we have r4 (n) = 8 Ldln f(d), and r4 = 8/ * f * 8 with f * 8 multiplicative. 
The first few values of r2 and r4 are shown in Table 2. One reason these functions 

get special attention is that they. can be related to factorization in the Gaussian integers 
and integer quatemions, respectively [4, Chapter 20] . 

TAB LE 2 :  N u m ber of ways to express n a s  the sum of two o r  fou r  squares 

n 2 3 4 5 6 7 8 9 10  1 1  1 2  

X 1 0 - 1  0 1 0 - 1  0 1 0 - 1  0 
r2 = 41 * x * e 4 4 0 4 8 0 0 4 4 8 0 0 

f 1 2 3 0 5 6 7 0 9 1 0  1 1  0 
r4 = 8/ * f * e 8 24 32 24 48 96 64 24 1 04 144 96 96 
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Antimultiplicative functions Let U M denote the subgroup of multiplicative func
tions in U. The desired complement of U M in U1 consists of functions we will call 
antimultiplicative, meaning f( l ) = 1 and f (pk) = 0 whenever pk is a prime power 
with k > 0. Let U A be the set of such functions. 

To begin with, UA is a subgroup of U1 • It is nonempty since I E  UA. Iff, g E UA 
and k > 0 then (f * g) (pk) = L.:=o f (pi )g (pk-i ) = L.:=o 0 = 0 so f * g E UA. 
When k > 0 we also have f- 1 (pk) = - "£:,:� f- 1 (p; )f (pk-i ) = - "£:,:� 0 = 0 so 
f- 1 E UA. Thus UA is a group. 

It is clear that U M n U A = { I } . We would like to be able to separate an arithmetical 
function into multiplicative and antimultiplicative pieces. Given f E U1 , define g by 

r 
g (p�I . . .  p �r) = T1 j(p� i) 

i= 1 
and let h = g- 1 *f. Then g E UM and we claim h E UA. For k > 0, we com
pute h (pk) = (g- 1 * f) (pk) = L.:=o g- 1 (pi ) f (pk-i ) = L�=O g- 1 (pi )g (pk-i ) = 
(g- 1 * g) (pk) = I (pk) = 0. Thus f = g * h with g E UM and h E UA, so UM 9 
UA = u1 . 

EXAMPLE.  Von Mangoldt's A function [1, p. 32] is given by 

A(n) = 
{ logp if n = !i, p prime, k > 0 
0 otherwise. 

It is useful in studying the distribution of primes . Although A is not a unit, eA is in U1 . 
Let 

!( ) _ A(n) _ { p if n = pk , p prime, k > 0 n - e - 1 otherwise. 

Now let us compute the multiplicative component of f. It turns out to involve the 
core of an integer, which is the product of its distinct prime divisors : y (p� 1 · · · p �r) = 
p1 • • • Pr· From the definition, the multiplicative part off is the function g given by 

r 
( k 1 k r) T1 J( k i) ( k 1 k r) g P1 · · · Pr = P; = P1 · · · Pr = Y Pt · · · Pr · 

i=l 

Table 3 shows the first few values of e A, its multiplicative component y, and its anti
multiplicative component y- 1 *eA. It is instructive to compute a few examples to 
verify that f = g *h . 

TAB L E  3: M u l ti p l i cative a n d  anti m u l ti p l i cative components of eA 

n 1 2 3 4 5 6 7 8 9 10 11 12 

e
A = f 1 2 3 2 5 1 7 2 3 1 11 1 

y = g  1 2 3 2 5 6 7 2 3 10 11 6 

y-1 
*e

A = h 0 0 0 0 -5 0 0 0 -9 0 5 

This completes the first step in the description of the group of units : U = C 9 
UM 9 UA. 
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Powers It is actually possible to regard U1 as a rational vector space in which U M and 
U A are complementary subs paces. This vector space structure is somewhat surprising, 
as it does not involve addition, but instead entails raising units to rational powers with 
respect to the Dirichlet product. For fEU let t<o ) = I , t<l ) = f, J <2l = f * f, etc . 
When m is a negative integer, let t<ml = (f- 1 ) <-ml . Needless to say, these powers obey 
the usual laws of exponents .  The associative law extends to m factors as 

(/1 * · · · * fm ) (n ) = L /1 (d J) · · · fm (dm) · 
d1···dm=n 

When /1 = · · · = fm = f this reduces to 

f (m )(n) = L f(d J) · · · f(dm ) . 
d1···dm=n 

As an example, consider powers of e and J.L = s- 1 . If m is a positive integer then 

In other words, this counts the number of ways to express n as the product of m positive 
divisors, taking the order of the factors into account. Since e is multiplicative, s<m ) is 
also multiplicative and it suffices to determine it on prime powers . Here 

I: 1 =  I: 1 ,  

where each k; E N. The number of ways to express k as the sum of m nonnegative 
integers is (m :�� 1 ) .  To see this, form a row of m + k - 1 1 s, choose m - 1 of them to 
be replaced by + signs; regrouping gives an expression for k as desired. For instance, 
if k = 5 and m = 3, the row 1 1 1 1 1 1 1 could become 1 1 + + 1 1 1, leading to 
5 = 2 + 0 + 3 . Thus, 

(m ) k _ (m + k - 1) _ (m + k - 1) 
e (p ) - - . m - 1  k 

We claim that J.L(m )(pk) = (- l )k (7) form:=:: 0. To begin with, l (pk) = (- l )k (�) . 
The induction step follows from J.L(m +l ) = J.L * J.L(m ) and the identity 

Whenm < 0, 

In other words, the formula for positive m also works for negative m. Similarly, if 
m < 0, then 

just as in the case m :=:: 0. In summary, 
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PROPOSITION 1 .  If m is an integer and n = P71 • • • p �' then 

and 

8(m\n) = f-1,(-m )(n) = ' ITr (m + k · - 1) 
i= l k ,  

89 

Furthermore, when m > 0, t:(m ) (n) equals the number of ways to express n as the 
product of m positive integers, taking the order of the factors into account. 

For example, r(n) = t:(2 )(n) = fT= l Ctki) = n�=l ( 1 + k J. ' 

EXERCISE .  Form :::: 0 show that t:�m ) = t:at:(m ). More generally, iff is any arith
metical function then ( t:af) (m ) = t:af (m ). Here t:af denotes ordinary multiplication. 

Elements of finite order Does U1 have any elements of finite order? A group is said 
to be torsion-free if the only element of finite order is the identity. The group U1 is 
torsion-free. 

To see this, assume f (m ) = I with m > 0. Suppose n > 1 and f (d) = 0 for all 
1 < d < n . Then 

0 = f (m )(n) = L f(dl ) · · · f(dm) .  
d, ... dm=n 

The only summands that might not be zero are those in which one of the factors d; 
equals n and the rest equal l . Then 0 = f (ml (n) = mf(n) and f(n) = 0. 

The next step in defining rational powers is to show the existence of roots . In 
a torsion-free abelian group, roots are unique when they exist. In our situation the 
reasoning is that if f (m ) = g (m ) then (f * g-l ) (m ) = I , and since ul is torsion-free, 
f * g -1 = I and f = g. 

Roots What happens when we try to construct roots? Suppose g E U1 and m is a pos
itive integer. We are looking for f E U1 such that f (m ) = g . To begin with, f( l ) = 1 . 
For n > 1 ,  

g (n) = f (m )(n) = L f (d i) · · · f (dm ) .  
dl"'dm=n 

Separating out the summands involving f (n) gives 

g (n) = mf(n) + L f (d i) . . · f (dm ) 

and solving for f (n) we get 

dl"·dm=n 
d], ... ,dm<n 

Thus f (n) can be determined inductively, and it is unique. 
When pm ) = g we write g O/m ) = f . 
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EXAMPLE.  Let us find s0/2) and s<113l. Let f be the function such that J<2l = s. 
The preceding formula tells us 

f(p) = ( 1 /2) ( 1 - 0) = 1 /2 
f (p2) = ( 1 /2) ( 1  - f(p)2) = 3/8 
f (p 3) = ( 1 /2) ( 1 - 2f(p)f(p2) ) = 5/ 16 

These values of s012l (pk) are displayed in Table 4. The mth root of a multiplicative 
function is also multiplicative, for reasons to be explained soon. This allows us to com
pute the remaining displayed values of s0/2) . Similar calculations yield the indicated 
values of s0/3) . 

TAB L E  4: D i rich let roots of s 

n 

s0/2) 
s0/3) 

1 

2 3 4 

1/2 1/2 3/8 
1/3 1/3 2/9 

5 6 7 

1/2 1/4 1/2 
1/3 1/9 1/3 

8 9 10 11 12 

5/16 3/8 1/4 
14/81 2/9 1/9 

1/2 3/16 
1/3 2/27 

The vector space (U1, *) Before describing the structure of U1, we review some 
properties of abelian groups, bearing in mind that they are normally discussed using 
additive notation. An abelian group ( G, +) is said to be divisible if for each g E G and 
each n E IP' there is an x E G such that nx = g. If G is torsion-free, x will be unique. 
This allows one to view G as a vector space over Ql by letting (mjn)g be the unique 
solution to nx = mg. We have shown that ( U1 , *) is a divisible torsion-free group, so 
we can view it as a vector space over the rationals . 

For a thorough discussion of divisible groups, see Fuchs [3, Chapter IV] . Divisible 
groups have some extremely nice properties. A subgroup of a divisible group is a direct 
summand if and only if it is divisible. Since U M and U A are complementary summands 
of the group U1, they are divisible subgroups and therefore complementary subspaces 
when U1 is regarded as a vector space. In particular, this implies that the nth root of a 
multiplicative function is multiplicative (as asserted in constructing Table 4) and that 
the nth root of an antimultiplicative function is antimultiplicative. In summary, 

THEOREM 1 .  For f E U1 and mjn E Qllet J<mfn) denote the unique g E U1 such 
that g<n) = J<ml. Defining scalar multiplication Ql x Ut --+ Ut by (q , f) --+ f (q) 
makes the group ( Ut , *) a  vector space over Q. Furthermore, U M and U A are comple
mentary subspaces: Ut = UM E9 UA. 

This result answers two questions posed by Berberian [2]. It describes the structure 
of the group U M of multiplicative functions and, since U = C E9 U M E9 U A, it also 
describes the quotient group U I U M. 

He also showed that the two functions sand s1 are linearly independent, and posed 
the problem of finding a third. In order to study independence, we introduce a new 
tool. 

Bell series 
With each arithmetical function we associate a family of formal power series called 
generating functions that distills much of the information about the function. If f is 
an arithmetical function and p is a prime, then the Bell series off with respect to p is 
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the formal power series 
00 

/p(X) = L f(pk)Xk. 
k=O 

Discussions of the basic ideas of these series can be found in Apostol [1 , p. 43] and 
McCarthy [5, p. 60] . When speaking of Bell series we often omit the phrase "for 
each prime p." The statement lp(X) = 1 is intended to mean that this is true for each 
prime p. 

Formulas involving Maclaurin series carry over to Bell series. The geometric series 
is especially useful. For example, 

t:p(X) = 1 +X+ X2 + · · · = 1 / ( 1 - X), 

meaning that 1 +X+ X2 + . .. = ( 1  - X)-1 in JR[[X] ] , the ring of formal power 
series. More generally, 

Another well-known function is the Liouville A [1 , p. 37] given by 

A(p7' ... p�') = (-1 )ki+···kr. 

Here A.(pk) = ( - 1)k and 

A.p(X) = 1 - X+ X2- X3 + · · · = 1 / ( 1  +X). 

The calculation of the series for the core function y is only slightly more complicated: 

pX yp(X) = 1 + pX + pX2 + pX3 + · · · = 1 + 
( 1  _X) 

1 - ( 1 - p)X 
1 - X 

The feature of Bell series that makes them so valuable is that (f * g) P (X) = 

/p(X)gp(X). This follows from the rule for multiplying power series : 

J,(X)g,(X) = ( t, f (p' )X') (t, g(pi)X i) 

= t, (tf<p')g(p,_,)) x' 

00 

= L(f * g)(pk)Xk = (f * g)p(X). 
k=O 

Bell series are most useful in studying multiplicative functions. If f, g E U M then, 
since a multiplicative function is determined by its values on prime powers, f = g 
if and only if /p(X) = gp(X) for each prime p. On the other hand, they are useless 
when it comes to antimultiplicative functions: f E U1 is antimultiplicative if and only 
if /p(X) = 1 for each prime p. Iff E U" then the Bell series of f equals the Bell 
series of its multiplicative component. 

The multiplicative property implies that if m E N then (J<ml)p(X) = /p(X)m. 
When fEU we have (f-1)p(X)/p(X) = lp(X) = 1 so (f-1)p(X) = /p(X)-1• 
Then f�ml(X) = /p(X)m when m is a negative integer as well. 
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Table 5 lists a few Bell series and illustrates some basic properties : fJ and e are 
inverses, and their series are reciprocals ;  a and ¢ illustrate the product rule; r is an 
example of a power. 

TAB L E  5 :  Selected Bel l series 

f /p(X) 
I 

/}.- 1-X 
E 1/(1-X) 
cJ 1/(1 -pX) 
T = E * E 1/(1 -X)2 
a= E * c] 1/(0-X)(1-pX)) 
l/J = /}.- * EI (1 -X)/(1 -pX) 
y (1 -(1 -p)X)/0 -X) 
A. 1/(l+X) 

What about Bell series of rational powers? Suppose f E U1 and /p(X) = F(X) = 

1 + 2::%:1 akXk. If m is a positive integer, there is a uni que g E U1 for which 
g<m) = f, in which case gp(X)m = /p(X). On the other hand, there is a uni que 
series G(x) = 1 + 2::%:, bkXk such that G(X)n = F(X): Its coefficients can be cal
culated inductively and are uni quely determined. Then gp(X) must e qual G(X), 
so there is no ambiguity in writing (JO/nl)p(X) = /p(X)11n or, for that matter, 
(J<m/nl) p(X) = /p(X)mln. 

Completely multiplicative functions We illustrate the value of Bell series by using 
them to determine rational powers of completely multi plicative functions . As noted 
earlier, each E:a has this property. Two more examples are Liouville 's A and the x used 
in computing r2• We can generali ze the former to AfJ, f3 =I= 0, by letting 

1 ( k1 kr) _ fJkl+"kr AfJ P1 · · · Pr - · 

Each AfJ is completely multiplicative, as are all the products E:aAfJ. 
If f is completely multiplicative, then f(pk) = f(p)k and f is determined by its 

values on the primes. In that case the Bell series are 

00 00 
/p(X) = L f(pk)Xk = L f(p)kXk = 1 / ( 1 - f(p)X). 

k=O k=O 
For example, (eaAfJ)p(X) = L%:oPkaf3kXk = 1 / ( 1 - paf3X). 

Calculating rational powers of completely multiplicative functions involves bino
mial series. Many calculus students know that, for s E ffi., 

( 1  + x)' = 1 + f (s)xk 
k=l k 

where G) = s(s- 1 )  · · · (s- k + 1 ) /k !, even when s is not an integer [8, p. 809] . 
This series converges for lx I < 1 .  In our setting, namely the power series ring ffi.[[X] ] , 
defining ( 1  +X)' to mean the series 1 + 2::%:1 G)Xk extends the binomial theorem for 
integer exponents to real exponents in a manner consistent with the ring operations . 
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Replacing s by -s and X by -C X yields the formula 

But 

so 

(-s) _ k _ (s + k - 1
) 

k
( l ) - k ' 

For example, if q is rational then 

and 

Thus Proposition 1 extends to rational powers : 

(q)c k, k,) _ rr' (q + k; - 1
) t: Pi · · · Pr - · i=l k; 

(k -�) = 
(k -�)(k - �) . . .  (�) (2k) 

k k !  � 
( 1 ) (3) . . .  (2k - 1 ) 

2kk !  

93 

(4) 

so c;Cl l2l(p) = 1 /2, c;Cl /2l(p2) = 3/8, and c;OI2l(p3) = 5/ 1 6, just as in Table 4. We 
could also write 

Similarly 

8(1/2) k = ( ( 1 ) (3) 
. . .  (2k - 1 )

) ( (2) (4) (6
) . . .  (2k) ) (p ) 2kk ! 2kk !  

= 
2_(2k) · 
4k k 

t:(l /3 ) k = 
(k - �) 

= 
( 1 ) (4) (7) . . .  (3k - 2) (p ) 

k 3kk !  
. 
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When f is completely multiplicative, 

00 
= L 8(q)(pk)f (pk)Xk 
k=O 

In other words, J< ql = e<ql f. Then, from the formula (4) for e< ql , we obtain 

PROPOS ITION 2 . If f  is completely multiplicative and q E Q then f (q) = e<ql f. 
When n = p; 1 • • • p�', 

Linear independence With Bell series at our disposal, we can obtain some sweeping 
results about linear independence in U M. In the sense of this vector space, a set F � U1 
is linearly dependent if and only if there exist distinct functions /1 , . . .  , f r  E F and 
rationals q1 , • • •  , q, not all zero, such that /? 1 l * · · · * f r(q, l = I .  In that case, let 
N be a positive integer such that all the mi = qiN are integers. Then f1(qJN) * · · · * 
f'(q,N) = I (N) or / (m il * . . .  * f'(m ,) = I In other words it suffices to consider integer Jr ' 1 J r • ' 
exponents . In UM we have ft(m J) * ... * f r(m r) = I if and only if n;=l (./i)p (X)m i = 1 
for each prime p. The following is useful in dealing with such products. 

LEMMA 1 . Suppose n;= l Pi ( X)m ; = 1 ,  where the Pi are nonconstant polynomials, 
not necessarily distinct, and the mi are integers. If some Pk is relatively prime to all 
the others, then mk = 0. 
In particular, when n;=t ( 1 - Cix)-m ; = 1, where the Ci are nonzero constants, if 

some ck is different from all the others, then mk = 0. 
Proof Rewrite the e quation as 

to obtain polynomials on both sides of the e quation. If Pk is relatively prime to the 
others and mk =/= 0, then Pk divides one side but not the other, a contradiction. • 

Before offering our principal result on independence, we illustrate the ideas in
volved with a special case. 

PROPOSITION 3. The functions {eaA.p I ex, f3 E JR, f3 =/= 0} are linearly independent. 
Proof Suppose /1(m 1) * · · · * f r(m ,) = I , where the mi are integers, Ji = Ba;AfJi' and 

the Ji are all distinct. We must show that each mi is zero. In terms of Bell series we 
have n;=t ( }i)p (X)m i  = 1 for every prime p , or 

r TI ( 1  - p"i /3i X) -m ;  = 1. 
i= l 



VOL.  78, NO. 2 ,  APRI L 2 005 95 
Let C; (p) = pa; {3;. Consider all the e quations C; (p) = C j (p) with i =/= j .  Each e qua
tion is satisfied by at most one prime p : If a solution to p a; {3; = pai f3j does exist it 
can only be p = (f3jl {3;)1f(a;-ai). Thus there are at most a finite number of solutions 
altogether, so there must be a prime that makes the C; (p) all different. Lemma 1 then 
implies that each m; is zero. • 

EXERCISE .  (POWERS OF y) For a E lR show that 

(ya) p( X) = 
1 - i1 � ; a) X 

and that {ya I a e JR} is a linearly independent set. 

Extension to C All of the foregoing extends to complex -valued arithmetical func
tions. In this setting Ba (n) = n a = ea Jnn. The function AfJ needs no special consid
eration since the exponents involved are all integers. The only delicate point arises 
in the proof of the preceding proposition, where we used the fact that each e quation 
C; (p) = C j (p) ,  i =1= j ,  had at most one solution. This is not the case in the complex 
numbers, since it is possible to have pa = q a for distinct primes p , q . For instance, if 
a = 2rr i I ln(312) , then (312) a = ealn(3/2) = e2:n:i = 1 and 3a = 2 a. 

On the other hand, if a, f3 e C and a =I= 0, there are at most two primes p such that 
pa = f3. To see this, suppose that p , q ,  r are distinct primes and pa = q a = r a = f3. 
Then (plq) a = (plr) a = 1. Taking logarithms, a ln(plq) = 2krr i and a ln(plr ) = 

2lrr i with k and l integers. The e quation al ln(plq) = ak ln(plr) quickly leads to 
p1rk = pkq 1 and the fundamental theorem of arithmetic implies that k = l = 0. But 
in that case, a ln(plq) = a  ln(plr) = 0, an impossibility, since a =/= 0 and p, q ,  r are 
distinct. 

We are now in a position to state our main result on independence. Berberian [2] 
proved that e ande1 are independent. But s =  e0).1 and e1 = e1A.1 are just two members 
of the following uncountable independent set. 

THEOREM 2. The functions {BaAfJ I a, f3 E C, f3 =/= 0} are linearly independent. 
Proof Proceed as in the proof of Proposition 3 .  The e quation C;(p) = Cj (p) , 

i =I= j ,  reduces to pa; - a  i = f3 j I {3;. When a; = a j there are no solutions, since we 
can't also have {3; = f3j· When a; =I= aj there are at most two solutions, as we have 
just seen. Once again, we only need to avoid a finite number of primes to find one that 
makes all the C; (p) distinct, so Lemma 1 again implies that all the exponents are zero . 

• 

The functions gcd(m, ·) As a final application we consider some functions involving 
the greatest common divisor. For m ,  n E JP> let Gm (n) = gcd(m , n ) . Each Gm is multi
plicative. These functions are not independent: G2 * G3 = G1 * G6, for example. Bell 
series allow us to uncover such relations . 

PROPOSITION 4 .  Let (a , b) and [a , b ] denote the gcd and lcm of a and b. 
1. Ga * Gb = G(a.b) * Gra ,bdor all a ,  bE JP>. 
2. /f(a , b)= 1 then Gab= JL * Ga * Gb. 
3. lfm = m1m2 • • • m ,  and the m ;  are pairwise relatively prime then 

G <r-1) G G m = JL * mt * · .. * m, • 

4. If the prime factorization of m is p�1 • • • p�' then 
Gm =JL<r-I)*G kt *""*G k,. 

Pt Pr 
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Proof First note that if h is the largest integer such that ph I m , then 

(Gm)p(X) =I + pX + pzxz + . . .  + ph-ixh-i + phXh + phXh+' + phXh+2 + . . .  

1 _Ph xh Ph xh 1 _ x _ (ph+' _ ph)xh+i 
------- + ---- = --------------------1 - pX I- X ( l - pX)(l-X) 

Call this g(p, h ,  X). Now suppose a , b E lP'. For a given prime p let ph be 
the highest power of p dividing a and let pk be the highest dividing b. Then 
(Ga * Gb)p(X) = g(p, h , X)g(p, k, X). The highest power dividing (a , b) is pm, 
where m = min(h , k) ,  and the highest dividing [a , b] is pM, with M = max(h , k) . 
Here (G(a,b) * Gra,bJ)p(X) = g(p, m , X)g(p, M, X). But either h :::: k, m = h ,  and 
M = k, or k :::: h ,  m = k, and M = h .  In either case g(p, h ,  X)g(p, k, X) = 
g(p, m , X)g(p, M, X). Thus (Ga * Gb)p(X) = (G(a,h) * Gra,bJ)p(X) for all p, and 
Ga * Gb = Gca,b) * Gra,b]· 

Noting that G1 = E, we have Ga * Gb = E *Gab when (a , b) = I. This implies the 
second equation. The third equation comes from repeated application of the second, 
and the fourth is a special case of the third. • 

As an example, G12 * G,8 = G6 * G36 = p,<2) * Gz * G3 * G4 * G9• 
This naturally raises the question of independence. In fact it can be shown that the 

functions {Gqk I q prime, k E lP'} are linearly independent. Noting that (Gqk)p(X) = 
l / ( 1  -X) if p I q, and 

1 + (p _ l)X + (pz _ p)Xz + . . .  + (pk _ pk-')Xk 
(Gpk)p(X) = 

1 _X 
, 

we could eventually establish the assertion by applying Lemma I to the numerators 
of the latter expressions, as in the proof of Proposition 3 .  The details of the argument, 
though interesting, are lengthy enough to divert us from the focus of this article so we 
will not pursue this point. 

Further investigation Interesting areas of research lie in many directions. 

• A systematic survey of multiplicative functions would be in order, in which the Bell 
series of families of functions are used to study their dependence relations in the 
rational vector space U M· An excellent source of such families is McCarthy [5] . 

• What about the group of functions we have termed antimultiplicative? We haven' t  
said anything about these, leaving the topic for readers to pursue. 

• Is U1 actually a vector space over lR or even C? For completely multiplicative f the 
right side of the formula in Proposition 2 for jCq) can be evaluated if q is real or 
even complex. What problems arise when one tries to extend exponentiation to real 
or complex exponents? 

The study of algebraic properties of the ring of arithmetical functions offers research 
opportunities at many levels. A Ma thema tica notebook that facilitates experimentation 
with these functions is available at the MAGAZINE website, www. maa. org/pubs/ 
mathmag. html. 

REFERENCES 
I. Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1 976. 

2. S.  K. Berberian, Number-Theoretic Functions via Convolution Rings, this MAGAZINE, 65, 1 992, 75-90. 

3. Laszlo Fuchs, Infinite Abelian Groups, Academic Press, New York, 1970. 



VOL. 78, NO. 2 ,  APRI L 2 005 97 
4. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 5th ed. ,  Clarendon Press, Oxford, 

1979. 

5. Paul J .  McCarthy, Introduction to Arithmetical Functions, Springer-Verlag, New York, 1 986. 

6. Ivan Niven and Herbert S. Zuckerman, An Introduction to the Theory of Numbers, 4th ed., John Wiley & 
Sons, New York, 1 980. 

7.  Kenneth H. Rosen, Elementary Number Theory and Its Applications, 4th ed., Addison Wesley Longman, 

Reading, Massachusetts, 2000. 
8. James Stewart, Calculus, 5th ed., Brooks/Cole, Belmont, California, 2003. 

Letter to the Editor: Sury on Binet 

In "A Parent of Binet's  Formula?," October 2004, B. Sury asks if there is "a more 
natural motivation explaining the polynomial identity" 

L) _ 1 ); (n � i) (XY); (X + Y)n-2i = xn + xn-1 y + . . .  + xyn-1 + yn. 
iO::O l 

Here is a simple combinatorial explanation of this identity. 
The (n�i) term counts the ways to tile a strip of length n with i dominoes of length 

two and n - 2 i  squares of length one (since such a strip has n - i tiles altogether, from 
which we choose i of them to be dominoes). Now imagine that we are tiling a strip of 
length n with squares and dominoes but our squares can be colored in X + Y ways, 
say X of the colors are l ight and Y of colors are dark. Also we will allow both halves 
of our dominoes to be colored, but the left half is always given a light color and the 
right half is given a dark color. Thus each domino can be colored in XY ways. Hence 
the number of tilings with exactly i dominoes (and thus n - 2 i  squares) would be 

The total number of tilings is the sum of the above expression over all values of i 
(to be nonzero, we must have 0 :::=: i ::::: n/2). 

The left side of the polynomial identity is the number of colored tilings with an 
even number of dominoes minus the number of colored tilings with an odd number 
of dominoes .  I claim that this difference is "almost zero" since there is an easy way 
to change the parity of the number of dominoes in "practically every" colored tiling. 
Specifically, for any tiling, look for the first occurrence of either A) a colored domino 
or B) a light square followed by a dark square. 

If the first such occurrence is a colored domino then chop that domino in half to 
produce a light square followed by a dark square, producing a tiling of type B. If the 
first such occurrence is of type B, then join the colored squares together to form a 
domino, thus creating a tiling of type A. Notice that when we go from A to B or from 
B to A, we change the parity of the number of dominoes. Thus practically every tiling 
of type A holds hands with a tiling of type B and vice versa. 

What are the exceptions? Simply those tilings that have no dominoes and never have 
a light square followed by a dark square. Such tilings consist of i dark squares followed 
by n - i light squares for some 0 ::::: i ::::: n ,  which can be done yi xn-i ways. In total, 
the number of tilings with no light-dark pattern is xn + xn-l y + ... + xyn-1 + yn' 
as desired. 

--ARTHUR T. BENJAMIN 
HARVEY MUDD COLLEGE 
CLAREMONT, CA 9 1 7 1 1  
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Outwitting the Lying Oracle 
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J 0 H N K. 0 S 0 I N A C H, J R .  
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Hampden-Sydney, VA 23943 

rkoether®hsc.edu 
josoinach®hsc.edu 

Lamentat ions 2:14 "Your prophets have seen for you false and foolish visions ; 
. . .  they have seen for you false and misleading oracles." 

(New Amer ican Standard B ible) 

At the Delphi Casino an oracle operates a table where gamblers place bets on coin flips . 
The gamblers win or lose the amounts they bet, depending on whether they correctly 
predict the outcomes of the coin flips . As you approach the table, the oracle says to 
you, "I know how the coin will land each time and I am willing to tell you, but I must 
warn you, I will try to win your bet by occasionally lying to you." This does not strike 
you as a very promising game, but after some negotiation, the oracle agrees to lie no 
more than once during the next three coin flips , provided that before each flip you first 
tell the oracle the amount of your wager. 

The question is :  How should you place your bets on the three coin tosses so that 
you win the greatest amount of money in the end, no matter what the oracle does and 
no matter what the coin tosses are? We assume that the oracle is always agreeable to 
any amount that you wish to wager, but you cannot wager more than you currently 
possess. 

We first encountered this problem in an article in Scientific Amer ican [3] . A very 
similar, but more general, problem appeared as Problem 10801 in the Amer ican Mathe 
mat ical Monthly [2] , along with its solution [1] . We gave this problem as a "Problem of 
the Fortnight" at Hampden-Sydney College, where we assumed you began with $100 
and the coin was flipped three times. One student solved the problem in the following 
manner (slightly paraphrased): 

"The greatest amount of money that you can be guaranteed to receive, regardless 
of what the oracle does and regardless of what the coin flips are, is $200: You should 
bet $50 on the first flip and agree with the oracle 's prediction. If the oracle lies, then 
you will still have $50 left, but will correctly guess the remaining two flips for $200; 
if the oracle is truthful, then you will have $150. On the next flip again bet $50 and 
agree with the oracle 's prediction. If the oracle lies, then you have $100 with one flip 
remaining, which you will guess correctly for $200; if the oracle is truthful, then you 
will still have $200 and will bet $0 on the final flip." 

While this answer is not entirely rigorous, the key ideas are present: No matter 
what the oracle does and what the results of the tosses are, if you always agree with 
the oracle, you have a strategy that guarantees that you double your initial amount. 

This answer raised some interesting questions : How does the solution change if 
we increase the number of flips and allow the oracle to lie more than once? Can you 
outwit the oracle by disagreeing with the oracle 's prediction? Or, stated differently, is 
there a strategy by which you could expect to win more than the maximum guaranteed 
outcome? Furthermore, is it possible to use the size of the bet to influence the oracle 
either to lie or tell the truth? 
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In this article, we first analyze the original game, but with any number of flips, 
followed by a simple generalization where the oracle may lie more than once. We 
then investigate the problem of trying to outwit the oracle, that is, finding strategies 
that give you the best chance for a better expected outcome, if possible, as well as 
strategies that the oracle should employ to minimize your chances for a better outcome. 
The mathematics involves relatively straightforward applications of game theory and 
probability, leading to some interesting results . 

Believing the oracle 

Our initial strategy will be always to agree with the oracle's prediction and make our 
bets on the basis of that strategy. We will start by solving the basic problem, where the 
oracle may lie at most once, and then allow the oracle to lie multiple times.  

Multiple flips, one lie We begin with a restatement of the basic problem. 

The Lying Oracle Problem: The oracle agrees to flip the coin a specified number of 
times and to predict the outcome accurately, except for possibly one lie. Before each 
prediction, you may bet any amount up to your current holdings.  The oracle will then 
announce the outcome, after which you must state the outcome on which you wish to 
bet. How should you place your bets for the coin tosses so that you win the greatest 
amount of money in the end, no matter what the oracle does and no matter what the 
coin tosses are? 

Solution: Using the terminology of game theory, we will henceforth refer to you, 
the bettor, as "the player." 

Let Wn represent the proportion of the player's current holdings that the player 
should wager when there are n flips remaining in order to optimize the final outcome, 
and let An be the ratio of the player's final winnings to the current holdings, when the 
player wagers the optimal amounts on the remaining n flips. 

If the oracle tells the truth on the first of the remaining n flips, then the player has 
the proportion 1 + Wn of the player's  current holdings. The player must continue to 
place bets cautiously since the oracle may still lie. Thus, the final proportion of the 
player's winnings would be (1 + wn )An- i · 

On the other hand, if the oracle lies, then the player has the proportion 1 - wn , 
but now the player is free to bet the maximum amount on all n - 1 remaining flips, 
thereby doubling the player's money each time. In that case, the final proportion would 
be ( 1  - Wn )2n- l . 

We wish to find the value of wn that will make these two expressions equal, nulli
fying the effect of the oracle's lie . That is, we wish to find the value of wn such that 

This common value will be the value of An . In particular, 

An = ( 1  - Wn )2n- i. 

( 1 )  

(2) 

Now by applying the above reasoning again, we see that An- i = (1 - Wn- d2n-z . 
Substituting this into ( 1 )  produces 

( 1  - Wn)2n- i = ( 1  + Wn) ( l - Wn- 1 )2
n-z . 
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Solving for Wn yields the recurrence relation 

w, = 0 , 
1 + Wn -i Wn = , n ::: 2 . 
3 - Wn -i 

(The condition w1 = 0 follows from the observation that with one flip and one lie, the 
player cannot guarantee a correct prediction; hence, the player should wager nothing.)  
An easy induction shows that the solution to this relation is 

n - 1 
w --- n >_ l .  n - n + 1 ' 

(3) 

A formula for An is obtained by substituting the expression for Wn given in equa
tion (3) into equation (2) . We summarize everything we have learned in the following 
theorem. 

THEOREM 1 .  If the ora cle has not yet l ied and there are n co in tosses rema in ing, 
then the player should bet (n - 1 ) / (n + 1 ) of the player's current amount of money. 
However, if the ora cle has l ied and therefore cannot l ie aga in, the player should bet 
everyth ing. In e ither case, the player's final amount w ill be exa ctly 2n j (n + 1 ) t imes 
the player's current hold ings. 

Multiple flips, multiple lies A natural generalization of this problem is to allow the 
oracle to lie more than once, so suppose that the oracle may lie up to k times during the 
coin flips. If the player's strategy is to continue to agree with the oracle's prediction, 
how should the player place the bets now so that the player again gets the greatest 
amount of money in the end? 

In this case, we are dealing with a family of games, G n,k o where G n,k represents the 
game of n coin flips and at most k lies.  Thus, if the oracle tells the truth, then play 
proceeds to game Gn- l .k • and if the oracle lies, then play proceeds to game Gn- l .k- i · 
FIGURE 1 shows how the games proceed, beginning with 4 flips and 2 possible lies by 
the oracle. Note that game G;, ; is always followed by game G;- J ,i - J .  for all i :=: 1. 

G4,2 
T G3,2 

T G2,2 
T G, , , T Go,o -----+ -----+ -----+ -----+ 

Ll Ll Ll Ll 
G3, 1 

T G2, 1 
T G�,� T Go,o -----+ -----+ -----+ 

Ll Ll Ll 
Gz,o 

T Gl ,O T Go,o -----+ -----+ 

Figure 1 The game tree start ing with 4 fl i ps and 2 l ies 

Let Wn,k represent the proportion of the player's current holdings that the player 
should wager in game G n ,k in order to optimize the final winnings, and let An,k repre
sent the ratio of the final winnings to the player's current holdings, provided the player 
wagers the optimal amounts in game G n,k and all succeeding games. Let us call Wn,k 
the cr it ical wager. 

If the player continues to believe the oracle's predictions, then whenever k equals n , 
the player should bet $0 from that stage on, a s  the oracle could lie every time, giving 
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the player no opportunity to recover from a loss .  Notice also that the games G n,o simply 
double the player's  money with each coin toss, and that the games Gn, 1 were analyzed 
above. 

THEOREM 2. For all n � 1 and for all k, 0 ::::; k ::::; n, in the game Gn,b 
2n 

A k - ---;-----,-n, - "k (�) L.... , =O , 
(4) 

and 

(5) 

Proof We will first establish a recurrence relation among the numbers An,k · Con
sider the first of n flips. If the oracle has told the truth, then the player would win Wn,k 
of the player's current holdings on that flip. If the oracle has lied, then the player would 
lose the proportion Wn,k on that flip. In the first case, the player's final winnings would 
be ( 1 + Wn,dAn-1,k and in the second case it would be ( 1 - Wn,k)An- 1 ,k-1 · 

In order to maximize the player's  guaranteed winnings, these two amounts should 
be equal. Setting them equal and solving for Wn,k yields 

It follows that 

An-1,k-1 - An-1 ,k Wn k = · ' An- 1 ,k-1 + An-1,k 

( (An-1 k-1- An-1 k)) An,k = ( 1 + Wn,k)An-1,k = 1 + ' ' An-1 ,k An-1,k-1 + An-1,k 
2An-1 ,k-1 An-1,k 

An-1,k-1 + An-1,k 

(6) 

We see from this equation that An,k is the harmonic mean of An-1,k-1 and An- 1 ,ko that 
is, 

_1_ -
� ( 1 + _1 _) 

. An,k - 2 An-1 ,k-1 An- 1 ,k 
. (7) 

We will use equation (7) to establish (4) by induction. 
First, it is clear that Wn,o = 1 ,  since the player will bet the full amount if the player 

knows that the oracle will not lie, and that Wn,n = 0, since the player will bet nothing if 
the oracle cannot be counted on to tell the truth at least once. It follows that An,o = 2n 
and An,n = 1 ,  for all n � 1 . 

Thus, equation (4) holds for all n when k = 0 or k = n . In particular, it holds for 
all k, 0 ::::; k ::::; n , when n = 0 or n = 1 . We proceed by induction on n . Let us assume 
that equation (4) is correct for all k, 0 ::::; k ::::; n , for some n � 1 ,  and consider An+1 ,ko 
for some k where 0 < k < n + 1 . We complete the induction by computing 

_1_ = � (-1- + _1 ) = � (I:�:� (7) + L�=O (7) ) 
An+1,k 2 An,k-1 An,k 2 2n 2n 

= 

= 

I:�:� (7) + I:�=o (7) 1 + 2::�=1 (C� 1) + (7)) 
2n+1 

L� (n:- 1) • =0 l 
2n+ 1  

2n+ 1  
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Now the reader can easily use (6) to verify that 

(n- 1 ) 
w - k n ,k - "k (n) · L- z =O 1 

MATH EMATICS MAGAZI N E  

• 

TA B L E S  1 and 2 give the values of An ,k and Wn,k for 1 ::::: n ::::: 7 and 0 ::::: k ::::: 6. 
It is interesting to note that the same solution was obtained by Pudaite [2] , where the 
assumption was equivalent to the oracle's lying exa ctly k times in n coin flips. 

TAB L E  1 :  Tab le  of fi na l  w i n n i ngs An, k 
k 

0 2 3 4 5 6 

2 1 

2 4 
4 -
3 

3 8 
8 -
4 

8 -
7 

1 6  1 6  1 6  
n 4 1 6  -

5 1 1  1 5  

5 32 
32 32 32 32 -
6 1 6  26 3 1  

64 64 64 64 64 
6 64 1 

7 22 42 57 63 

1 28 1 28 1 28 1 28 128  1 28 
7 128  - - -

8 29 64 99 1 20 1 27 

TAB L E  2 :  Tab le  of cr i t ica l  wagers Wn, k 
k 

0 2 3 4 5 6 

0 0 0 0 0 0 

2 
1 -
3 

0 0 0 0 0 

2 
3 - -

4 7 
0 0 0 0 

3 3 1 
n 4 - - 0 0 0 

5 1 1  1 5  

4 6 4 
5 - 0 0 

6 1 6  26 3 1  

5 10  1 0  5 1 
6 - - 0 

7 22 42 57 63 

6 1 5  20 1 5  6 1 
7 - - -

8 29 64 99 1 20 1 27 
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Note that if the player does not bet the critical wager Wn,k at each stage, then the 
oracle can follow a pure strategy that guarantees the player's final outcome to be less 
than if the player had bet the critical wager. If the player bets more than the criti
cal wager, then the oracle will lie, reducing the amount the player has to start with 
for the next game by more than the critical wager. Likewise, if the player bets less than 
the critical wager, then the oracle will tell the truth, which will increase the amount 
the player has to start with for the next game by less than the critical wager. Thus, by 
betting an amount different from the critical wager, the player can induce the oracle 
to lie or be truthful, but always at a disadvantage to the player, provided the player 
continues to believe the oracle. 

Outwitting the oracle 

The above analysis makes two crucial assumptions: the player will always agree with 
the oracle, and the oracle knows that the player will always agree. These assumptions 
ensure that the player will never receive less than the guaranteed amount, no matter 
what the oracle does or how the coin is flipped, but they also guarantee that the player 
will never receive more than that amount. But what if the player suspects that the oracle 
is lying? Can the player expect to increase the final winnings by not agreeing with the 
oracle? Indeed, can the player induce the oracle to lie by betting a large amount, and 
then win that amount by disagreeing with the oracle? As we investigate this possibility, 
we will also assume that the oracle now suspects that the player may disagree. 

A single flip Let's begin with a simple example. Suppose we have exactly one flip 
and the oracle has one lie. If the oracle knows that the player will always agree with 
the oracle' s prediction, then the oracle will lie if the player bets any amount at all .  
However, if the player is unpredictable-the player may choose to disagree-is it to 
the player's advantage to bet some amount? Is there a strategy for betting a certain 
wager so that the player's expe cted payoff is more than the amount guaranteed by the 
previous analysis? After all, in this game the player following the previous strategy 
would bet nothing. 

This game may be modeled by a simple two-by-two matrix, where the entries rep
resent the payoffs for the player. The rows indicate the player's two strategies (Agree 
or Disagree) , while the columns represent the oracle's two strategies (tell the Truth or 
tell a Lie). Hence, in this example, we have the following payoff matrix for the player: 

Truth 
Agree ( 1 + w 
Disagree 1 - w 

Lie 
1 - w ) 
1 + w ' 

where w is the proportion wagered (whether optimal or not) . Let pT and pL be the 
probabilities that the oracle will tell the truth or lie, respectively. Similarly, let p A 
and p D be the probabilities that the player will agree or disagree with the oracle, re
spectively. In order to decide which strategy to pursue, the player computes the ex
pected payoff of each row of the payoff matrix; the player then chooses the strategy 
(row) whose expected payoff is the greater of the two. The player's expected payoff of 
agreeing with the oracle is p T ( 1 + w) + p L ( 1 - w) ; likewise, the expected payoff of 
disagreeing with the oracle is pT ( 1 - w) + p L ( 1 + w) . 

On the other hand, the oracle's optimal strategy occurs when these two expected 
payoffs are equal. Setting the expected payoffs from the two rows equal yields 
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Solving for Pr and PL gives Pr = PL (assuming that w > 0) . Since Pr + pL = 1 ,  
we have that Pr = pL = 1 /2 . Substituting these values into the player's expected 
payoff from the first row gives us an expected payoff of 1 .  A similar calculation yields 
PA = Pv = 1 /2 . Thus, the player cannot expect to do any better in this case than in 
the original scenario. 

Multiple flips A similar analysis works in general . Let En,k denote the expected 
payoff of the game G n ,k when the player and the oracle employ their optimal strategies. 
In this game, the payoff matrix is 

Truth 
Agree ( ( 1 + w)En- 1 ,k 
Disagree ( 1 - w)En- 1 , k 

Lie 
( 1 - w)En- 1 ,k- 1 ) 
( 1 + w)En- 1 ,k- 1 ' 

where w is the proportion of the wager. The strategies adopted by the players depend, 
of course, on the values of w, En- 1 ,b and En- 1 , k- 1 · 

LEMMA 1 .  In the game Gn,b for all n � 1 and for all k, 1 ::::: k ::::: n, 
En,O = 2n , 

En ,n = 1 , 
En ,k < En,k- 1 • 

E 
2En- 1 ,k- 1 En- 1 , k 

n k = ' En- 1 ,k- 1 + En- 1 , k 

(8) 

(9) 

( 10) 

( 1 1 ) 

Proof We will establish (8) and (9) first. The game G 1 ,o is trivial. The oracle must 
tell the truth and the player will agree. Therefore, E1 ,o = 2. Notice also that we have 
already analyzed the game G 1 , 1 and found that E1 , 1 = 1 .  

In the game Gn ,o . the oracle must always tell the truth, which gives the player a pure 
strategy of agreeing with the oracle each time. Thus, the player's optimal strategy is 
to wager the entire amount and will therefore double the amount wagered each time. 
Hence we have En,o = 2n . 

The game Gn ,n has payoff matrix 

Lie Truth 
Agree ( ( 1 + w)En- 1 , n- 1 
Disagree ( 1 - w)En- l , n- 1 

( 1 - w)En- l ,n- 1 ) 
( 1 + w)En- l ,n- 1 

. 

(Recall that whether or not the oracle lies, the next game is Gn- 1 ,n_ 1 . ) Again, a straight
forward analysis shows that En ,n = En- l ,n- 1 and it follows that En ,n = 1 for all n � 1 . 

We now establish parts ( 10) and ( 1 1 ) of the lemma. First, note that we have already 
shown that E1 , 1 < E1 ,0 .  Also, if we define E0, 1 = Eo,o = 1 ,  then we see that 

E 
_ 2Eo,oEo, l _ 1 1 1 - - · ' Eo,o + Eo, t 

We will proceed by induction on n .  Suppose that ( 10) and ( 1 1 ) hold for some n � 1 
and for all k, 1 ::::: k ::::: n . Consider, for some such k, the payoff matrix of game Gn+l . k : 

Truth Lie 
Agree ( ( 1 + w)En,k ( 1 - w)En,k- 1 ) 
Disagree ( 1 - w)En,k ( 1 + w)En,k- 1 · 
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We say that a row is a dom inated row if its entries are never greater than the corre
sponding entries of the other row in the payoff matrix. On the other hand, we say that 
a column is a dom inated column if its entries are never less than the corresponding 
entries of the other column in the payoff matrix. This difference reflects the fact that 
the oracle 's goal is to reduce the amount that the player wins; hence, the oracle always 
seeks the smallest possible payoff for the player. 

Clearly, neither row is dominated by the other (assuming that w > 0). It is also 
clear, from the assumption that En,k < En,k- t . that column 1 cannot be dominated by 
column 2. However, column 2 will be dominated by column 1 if 

This occurs when 

( 1 + w)En,k ::::; ( 1 - w)En,k- I · 

En k- I - En k w < , , 
- En,k- I + En,k 

( 1 2) 

In this case, the oracle has a pure strategy: always tell the truth, in which case the 
player also has a pure strategy: always agree. This produces a payoff of ( 1 + w)En,k · 
Subject to the inequality ( 1 2) , this expression reaches a maximum value of 

when 

2En,k- ! En,k 
En,k- I + En,k 

En,k- I - En,k w = ____;____; __ :.... 
En,k- I + En,k 

On the other hand, when w > (En,k- I - En,k) / (En,k- I + En,k) ,  neither column is 
dominated by the other, in which case the oracle has a mixed strategy. The oracle's 
optimal strategy (pT , p L) will make the expected payoff of row 1 equal to the expected 
payoff of row 2. That is, 

This simplifies, since w > 0, to 

Using the fact that P£ = 1 - pT ' we may solve for pT and pL : 

En k- I PT = ' ' En,k- l  + En,k 
En k PL = ' 

En,k- I + En,k 

( 14a) 

( 14b) 

Now, by substituting these expressions into either side of ( 1 3) , we compute the 
expected payoff to be 

2En,k- l En,k 
En,k- I + En,k 
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This establishes that the optimal payoff occurs when 

En k- 1 - En k w > ' ' ' 
- En,k- 1 + En ,k 

in which case the oracle will utilize the optimal strategy given by ( 14a) and ( 14b). 
Thus 

which establishes ( 1 1 ) .  

2En.k- l  En ,k En+ 1 , k  = , 
En.k- 1 + En,k 

( 1 5) 

As was remarked in (7), equation ( 1 5) implies that En+ l , k  i s  the harmon ic mean of 
En,k- 1 and En ,k ; that is, 

Therefore, 

En ,k < En+ 1 ,k < En ,k- 1 · 

Since these inequalities hold for all k, I :s k :s n , it follows that 

1 = En,n < En+ 1 ,n < En,n- 1 < · · · < En, 1 < En+1 , 1 < En.O = 2n , 

establishing that 

En+1 , k < En+ l ,k- 1 

for all k, 2 :S k :S n . As special cases, we have already shown that En+ 1 ,n+ 1  = 1 and 
En+ 1 .0 = 2n+ l , so we may conclude that inequality ( 1 0) of the lemma holds in general . 

• 

COROLLARY 1 .  If the player and the ora cle follow the ir opt imal strateg ies in the 
game G n ,b then an opt imal wager is any amount w su ch that 

En- l , k- 1 - En- 1 , k :S W :S 1 .  
En- 1 ,k- 1 + En- 1 , k 

As before, we will call the value 

the cr it ical wager. 

En- l ,k- 1 - En- l ,k 
Wn k = ' En- l ,k- 1 + En- l , k 

( 1 6) 

COROLLARY 2 .  Let w be the amount of the wager in the game Gn,k · Then the 
ora cle 's opt imal strategy is g iven by 

PT = { !  + .lw 2 2 n , k 

and the player's opt imal strategy is g iven by 

if 0 :S W :S Wn ,k 
if Wn.k < W :S 1 

if 0 :S W :S Wn,k 
if Wn, k  < W :S 1 . 

( 17) 
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Proof By using formulae ( 14a), ( 14b), and ( 1 6), we see that 

when the oracle has a mixed strategy, from which the formula for the oracle's strategy 
follows.  We will now compute the player's optimal strategy (p A, p D) for the game 
Gn,k · This strategy occurs when the expected values of the two columns of the payoff 
matrix are equal, giving the equation 

p A( l + w)En- l ,k + PvO - w)En- l ,k = p A( l - w)En- l ,k- 1 + PvO + w)En- l ,k- 1 · 
This simplifies to 

w (p A- Pv) = Wn,k . 
from which the formula for the player's strategy follows. • 

If the player bets any amount up to the critical wager Wn,k . then Corollary 2 pre
scribes a pure strategy: always agree. On the other hand, it is now rational for the 
player to bet more than the critical wager. Indeed, it is rational for the player to bet 
even the full amount ( w = 1 ), provided the player is willing to disagree with the oracle 
occasionally. We will pursue this possibility further in the next section. 

It is interesting to note that, if the player bets more than the critical wager Wn ,k . then 
the oracle's mixed strategy is not dependent on the size of the wager, even though the 
player's mixed strategy is. 

THEOREM 3. For all n :=: 1 and for all k , 0 :::; k :::; n, in the game Gn ,ko 

and 

2n 
E k - ---;--...,.... n , - "k (n) 

L .. , . =O , 

(n- 1 ) 
w - k n,k - "� (�) . 

L...,=O 1 

Proof Lemma 1 establishes the same recurrence relation for En,k that was earlier 
established for An,k · Thus, the solution for En,k is the same as the solution for An,k · 
Furthermore, equation ( 1 6) is of the same form as equation (6), so Wn,k will be the 
same as before. • 

We see that the expected payoff in this case is the same as the guaranteed payoff in 
the earlier case where the player always agreed with the oracle. Therefore, you can 't 
outw it the ora cle ( in the long run) by d isagree ing w ith the ora cle! You might as well 
agree with the oracle, even though you know the oracle might lie. 

Probability of a given sequence 

We have now seen that by betting a sufficiently large amount and occasionally dis
agreeing with the oracle, we can induce the oracle to follow a predictable mixed strat
egy; that is, the oracle will tell the truth with known probability Pr .  That makes it 
possible to calculate the probability of any particular sequence of truths and lies. 

Note the significance of the denominator in Theorems 2 and 3 . The term (7) rep
resents the number of ways in which the oracle can lie exa ctly i times with n flips 
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remaining. Hence, the denominator L�=o G) represents the total number of ways in 
which the oracle can lie with n flips and up to k lies. It turns out, as shown in the fol
lowing theorem, that these different sequences of truths and lies are all equally likely. 
This seems reasonable, since this gives the player the least amount of information on 
which to choose whether to agree or disagree. 

THEOREM 4. Beginning with game Gn ,k> the probability of any given sequence of 
truths and lies for the n coin tosses is 1 / L�=O G). 
Proof Let T and L represent truths and lies, respectively, in a sequence of flips. We 

proceed by induction. In the game G 1 , 1 there are only two possible sequences :  T or L . 
As we have already seen, the probability of each is 1 /2. Now suppose that for some 
n :::: 1 ,  the likelihood of any particular sequence of truths and lies beginning with the 
game Gn,k is 1 /  L�=O G) ,  for all k , 0 .:S k _:::; n . Consider a sequence beginning with 
the game G n+ 1 ,k for some k , 0 _:::; k .:S n + I. The first term of the sequence is either T 
or L . By substituting the expressions in Theorem 3 into formula ( 1 7) and simplifying, 
we find that the probability that the first term is T is 

and the probability that the first term is L is 

"'k- 1 (n) 
PL = "'k (n+ l) · L..z =O 1 

L..z =O 1 

By hypothesis, the probability of the remaining n terms of the sequence is either 
1 /  2:.:;=0 G) or 1 /  I.:;:ci G) , depending on the number of lies remaining. Therefore, 
if the first term is T, then the probability of the fuU sequence is 

and if the first term is L , then the probability of the full sequence is 

Thus, regardless of the first term, the probability of every sequence beginning with 
game Gn+l ,k is 1 / 2:.:;=0 (n� 1 ) . This completes the induction. • 

The significance of the equation 

2n 
E k - -,...---n, - "'k (�) L..z =O 1 

now becomes more apparent. The expected payoff of game G n ,k does not depend on 
the size of the wager w, provided w :::: wn,k . Therefore, consider the simple case where 
w = 1 in every game. If the oracle tells so much as a single lie, then the player loses 
everything, ending up with $0. However, if the player succeeds (by chance) in out
witting the oracle every time, then the player ends up with $2n . This happens with 
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probability 1 /  L�=D (;) . Therefore, the expected payoff is 

zn 
E k - -,---n, - "� {�) ' 

L..,, =O , 

just as we calculated earlier. 

Final thoughts 

Playing the game with the lying oracle is best suited for those who are averse to risk. 
After all, if you try to outwit the oracle, you can't  expect to do any better than if you 
simply believe the oracle each time. Furthermore, by betting large sums of money you 
cannot tempt the oracle into trying to outwit you, provided the oracle suspects that you 
may disagree. Indeed, the oracle simply mixes the predictions with lies and truths in a 
fixed fashion, aloof to the amount you bet, unless you are too cautious with your bet. 

Listed below are some variants of the game which may make for some interesting 
further investigation. In each case, what is the player's optimal strategy and expected 
payoff? 

• In the above analysis, the oracle need not lie at all during the course of the coin flips. 
Suppose there is a minimum number of lies that the oracle must tell . 

• The oracle might also require you to place all your wagers before the first coin flip, 
expressed as a proportion of the amount you'd have before each coin flip. 

• Similarly, the oracle might require you to place all your wagers before the first coin 
flip, but expressed as absolute amounts. If your holdings ever drop below your next 
wager, then you lose everything [3] . 

• Suppose the oracle improves the payoff for guessing the coin flip correctly (say, a 
correct guess pays 3 : 1 ) .  (See the editorial comment in [1] .) 

• What if the probability distribution of the possible outcomes isn't  uniform (say, the 
coin is weighted)? 

• What if, instead of a coin, the oracle uses a die (or any other object where the number 
of possible outcomes is greater than 2)? 

• Consider a k-gullible oracle, that is, an oracle that continues to believe that the player 
will agree until the player has disagreed k times.  From that point on, the oracle 
suspects that the player may disagree. 
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Would we turn to MATHEMATICS MAGAZINE today for a seminal research paper in 
analysis by one of the current giants of mathematics? Perhaps not. It would have been a 
good idea in 1 948, though, when Marshall H. Stone published in the MAGAZINE [10] 
what came to be known as the general Stone-Weierstrass theorem. 

Though this may be the most striking example of a new and important result to ap
pear first in MATHEMATICS MAGAZINE, there are many other examples of interesting 
articles written for the MAGAZINE by eminent mathematicians. The MAGAZINE has 
also been a rich resource of gems by less well-known mathematicians, and its backlog 
can be mined for all sorts of purposes . In the following pages we' ll sample some of 
the items that we found attractive and interesting. They are highly personal choices, of 
course. The emphasis will be on the earlier years of the MAGAZINE, in part because 
many readers will be familiar with more recent material. In addition, the first author 
was Editor of the MAGAZINE from 1 986 to 1 990 and finds it too difficult to choose 
among his children ! 

We begin with a brief history of the MAGAZINE, whose past is more varied than 
that of most journals. Continuing the historical theme, we note some of the gems that 
established the history of mathematics as one strength of the MAGAZINE ' s  offerings. 
We then show what can be learned from these pages about 20th-century mathemat
ical culture, including the culture of mathematical awards . The longest part of the 
article consists of collections of gems by mathematical theme: algebra, calculus & 
analysis, combinatorics, games & puzzles, geometry, number theory, probability, and 
teaching & pedagogy. We close with a brief account of the Problems section, with its 
own distinctive cast of characters . 

Several Proofs Without Words and book reviews are discussed in appropriate 
sections. Roger Nelsen has published two collections of selected "Proofs Without 
Words" [7, 8] , most of which are taken from the MAGAZINE.  For the reader left 
wanting more, the backlog of the MAGAZINE itself is the place to seek more gems . 
Readers may wish to consult the Mathematics Magazine/College Mathematics Journal 
database at http : I /www. math. hmc. edu/ j ournalsearch/. This free, easy-to
search database contains the title, author, and either a summary or the first paragraph 
of almost every article, note, and proof without words that has appeared in the MAG
AZINE (and the College Mathematics Journal) . 

The history of the M A G AZ I N E  

The earliest history of the MAGAZINE (first called the Mathematics News Letter, then 
the National Mathematics Magazine) is rather obscure. It started as a series of pam
phlets published by the Louisiana-Mississippi Section of the MAA in 1 926 and con
tinued there under the editorship of Samuel T. Sanders of Louisiana State University 
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until l 945 . (The first subscription rate was 50 cents a year, for ten issues, "the price of 
two good movie entertainments.") Sanders himself was the most prolific contributor 
in the early years, although some of his contributions were pleas for more articles on 
mathematics. 

In an amusing early article, "The angle trisection chimera once more," 6:3 ( 1 93 1132), 
1-6, Sanders destroys an angle-trisection "proof' given by The Very Reverend J. J. 
Callahan, President of Duquesne University. (Since almost all references are to articles 
in the MAGAZINE, we shall use this format to give precise references to these papers 
instead of having an extensive list of references at the end.) Fr. Callahan's error was 
not one of the more subtle ones; he merely showed how with straightedge and compass 
one could construct an angle that is three times as large as a given angle ! 

Sanders includes an explanation, given by Tobias Dantzig in his classic Number, the 
Language of Science, of why the Greeks chose such limiting tools for their construc
tions: "The impossibility of the classic problem was imposed by a restriction which 
was so old as to be considered natural, so natural, indeed, that it was rarely men
tioned. When the Greek spoke of a geometrical construction, he meant a construction 
by straight-edge and compasses. These were the instruments of the gods ; all others 
were banned as unworthy of the speculation of the philosopher. For Greek philos
ophy, we must remember, was essentially aristocratic. The methods of the artisan, 
ingenious and elegant though they may have been, were regarded as vulgar and ba
nal, and general contempt attached to all those who used their knowledge for gainful 
ends . . . .  " 

The very earliest years of the MAGAZINE were lean on mathematical content, with 
articles focusing instead on high school algebra, commercial arithmetic, pedagogy, 
and so on. A pleasant exception is a note by Zena Garrett of Mississippi Delta State 
Teachers College on "Perfect Numbers," 3:6 ( 1 928/29), 1 7-19 .  She describes her in
troduction to perfect numbers-integers that equal the sum of their proper divisors-in 
a class where students were given the first two, 6 and 28, and were told to find the next 
one by themselves, without using the library. She gives a charming description of her 
investigation and eventual success, using finite geometric series, in finding 496 and 
8 1 28 , and then the general formula 2n- I (2n - 1 )  with 2n - 1 a prime. 

The editor ran an experiment by distributing copies of the 1 959 issues of the MAG
AZINE through newsstands. He reported that in this post-Sputnik era they sold 40% of 
the copies distributed. 

The management of MATHEMATICS MAGAZINE was taken over by the MAA in 
1 96 1  after a new editor had been appointed in 1 960, Robert E. Horton. At that time the 
MAA's Board of Governors decided that the volume year of the MAGAZINE should 
coincide with the calendar year, not the academic year, a change evident in the refer
ences to articles below. 

Rufus Isaac 's one-page article, "Two Mathematical Papers without Words," 48 
( 1 975), 1 98, consisted solely of the two images shown in FIGURE 1 .  

Figure 1 On tri secti ng an ang le A proof of  the Pythagorean theorem 
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A reader was quick to point out that the second "proof by words" appeared as 
"A 'look-see' proof" in Martin Gardner's Mathematical Games column of Scientific 
American in October 1 964, and was in fact millennia old. In January of 1 976, MAG
AZINE editors Seebach and Steen encouraged further contributions of these newly
named "proofs without words," and they have since become popular staples of the 
MAGAZINE as well as other publications like the College Mathematics Journal. 

The M A G A Z I N E  on the history of mathematics 

The history of mathematics has always played a prominent role in the MAGAZINE. 
Earlier articles on it were broader and aimed more at the general reader, while in the 
last half-century articles on history have tended to be more specialized and technical. 

• E. T. Bell's Men of Mathematics, published in 1 937 and still an enormously 
popular book, has no doubt inspired many to study higher mathematics. In recent 
years many have criticized the book for its historical inaccuracies. That has not, 
however, discouraged its fans .  The MAGAZINE review, by G. Waldo Dunnington, 
11 ( 1 936/37), 406-7, should have alerted later critics to possible historical short
comings :  "Dr. Bell is a seasoned, skillful writer with a fluent style; he writes with a 
realistic, curt, potent wit . . .  [the] careful reader will find a considerable number of 
examples of . . .  'exaggeration.' . . .  [Bell] frequently recounts the charming legends, 
interesting traditions, and melodramatic fictions concerning the various mathemati
cians, but fortunately he usually discounts them properly by elucidating that they may 
be apocryphal anecdotes, rather than fact . . .  Dr. Bell allows his imagination to play; 
conjecture, personal opinion and speculation are abundant." 

• A historical gem is E. T. Bell 's two-part article "Gauss and the early develop
ment of algebraic numbers," 18 ( 1 943/44), 1 88-204, 2 1 9-33 .  Bell surveys Gauss's 
contributions to many areas such as proofs of the fundamental theorems of arithmetic 
and algebra, elliptic functions (before Abel and Jacobi), reciprocity theorems, Gauss 's 
"epochal achievement in introducing algebraic integers into arithmetic," and his am
bivalent attitude towards Fermat's last theorem. Regarding the latter, Bell notes that in 
1 808 "Gauss had stopped, baffled, before his special case n = 7 of Fermat's last the
orem." Eight years later Gauss asserted in a letter, "the Fermat theorem as an isolated 
proposition has little interest for me, since a multitude of such propositions, which one 
can neither prove nor refute, can be easily promulgated." However, later in the same 
letter Gauss says that if a "lucky star" prevails in allowing him a "great extension of the 
higher arithmetic", then "also the Fermat theorem will thereby appear as only one of 
the least interesting corollaries ." Needless to say, the lucky star never appeared. Bell, 
as in his popular books, writes both pithily and with insight. For example, in contrast
ing operations with complex numbers (a field) with operations with algebraic integers 
(only a ring) , Bell observes, "Generally the distinction between algebra and arithmetic 
has been roughly summarized in the dictum that division is only exceptionally im
possible in algebra and only exceptionally possible in arithmetic." Bell's comments 
are occasionally provocative, for example, "Considered objectively, biography is the 
meanest form of gossip." 

• Readers interested in the history of mathematics may want to look at the un
usual article "Mathematics and mathematicians from Abel to Zermelo," 2 6  ( 1952/53), 
1 27-46, by Einar Hille, the distinguished analyst at Yale, who became President of 
the American Mathematical Society in 1 947-48. Viewing mathematics as a func
tion of several variables, two of which are time and field of research, Hille presented 
two cross-sections in the article. The first, "Who was who in mathematics in 1 852?", 



VOL.  78, NO. 2 ,  APRI L 2 005 1 1 3 

focuses on mathematicians in France, Germany, and Great Britain (including Ireland), 
since at that time "outside of these countries research mathematicians were few and far 
between." The second cross-section is on "The development of analysis, particularly 
complex function theory, until the time of the first world war." Here the contrast be
tween the approach of Weierstrass ( 1 8 1 5-97) and that of Riemann ( 1 826--66) is strik
ing: "Weierstrass had the local point of view, Riemann the global one." Hille observes 
that the character of their work was also fundamentally different: "Weierstrass fin
ished what he started," while mathematicians have been working on Riemann's ideas 
and trying to prove his conjectures since the mid- 19th century. 

• In volume 35 ( 1 962), 153-54, Underwood Dudley, building on some data col
lected by Augustus De Morgan and others, tabulated 45 values of rr calculated to five 
decimal places by various mid- 1 9th century calculators. He then examined rrr . de
fined to be the ratio of the circumference of a circle to its diameter at time t, where 
t is taken between 1 832 and 1 879. He constructed the least squares linear function 
rr1 = .0000056060t + 3 . 1428 1 where t is measured in years C . E . ,  and, extrapolating, 
found that rr1962 = 3 . 1538 1 .  He also noted that the Biblical value of rr1 = 3 was excel
lent for its time and that calculations will be easier in June of 10,201 when rr1 will be 
3 .20000. Further, rr1 equaled 3 . 141 5926535 . . .  on November 10, 2 1 9  B . C . E . ,  at around 
10:54 in the evening. Dudley goes on to calculate the date of creation, 560,6 1 5  B . C . E . ,  
which agrees "neither with astronomical theory nor with Archbishop Ussher's chronol
ogy," and concludes, "Clearly more research is needed." 

• The influential mathematician and historian B. L. van der Waerden became a 
MAGAZINE author with his "Hamilton's discovery of quatemions," 49 ( 1 976), 227-34. 
Quoting extensively from Hamilton's mathematical papers and letters, van der Waer
den traces Hamilton's train of thought, first through his attempts to multiply triplets 
(a , b, c) and (x , y , z) so that the "law of the moduli holds," 

(az + bz + cz) (xz + l + zz) = uz + vz + wz , 

and finally to Hamilton's "lightning stroke" of continuing to four dimensions. This last 
metaphor is apt; in a letter to his son describing the famous walk on which he carved 
the quatemion formulas on Brougham Bridge in Dublin, Hamilton wrote, "An electric 
current seemed to close; and a spark flashed forth . . . .  " Van der Waerden observes that 
Hamilton would have quickly given up his search to multiply triplets if he had read 
Legendre's great work Theorie des nombres, since in it Legendre remarks that 3 and 
2 1  are sums of three squares, 3 = 1 + 1 + 1 and 2 1  = 1 + 4 + 1 6, but their product 63 
is not since it is of the form 8n + 7. (Square numbers modulo 8 are either 0, 1 ,  or 4, so 
it is easily checked that u2 + v2 + w2 is not congruent to 7 modulo 8 . )  

• In 1 986, Israel Kleiner published an extraordinary survey of the history of groups, 
' 'The evolution of group theory," 59 ( 1 986), 195-2 1 3 .  It is nicely illustrated and gives, 
in addition to an illuminating text, a schematic showing the various stages of group 
theory from its sources and its specialized theories of permutation groups, abelian 
groups, and transformation groups, to the "divergence" in the 1 920s and beyond: finite 
group theory, combinatorial group theory, topological group theory, and so on. It's one 
of a series of insightful historical articles by Kleiner in the 80s and 90s. 

Mathematica l  cu ltu re 

We present some glimpses of the culture of mathematics, which collectively illustrate 
that portraying mathematical culture has often been a significant feature of the MAG
AZINE. 
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• Anyone who has suffered from having an obviously worthy manuscript rejected 
by an editor should take comfort in an article by Arnold Emch of the University of 
Illinois 11 ( 1 936/37), 1 86-89, entitled "Rejected papers of three famous mathemati
cians." After stating that merit should be the only criterion for deciding whether to 
publish, adding that "there is no other science in which this assertion should appear 
more evident than in mathematics," Emch describes the sorry vicissitudes of three pa
pers by Ludwig SchHifii, Bernhard Riemann, and Ernest de Jonquieres. Each paper 
was published more than a quarter-century after it was submitted. 

• George Bergman, now a distinguished professor at Berkeley but then a 1 2-year 
old student at Junior High School 246 in Brooklyn, published in the MAGAZINE, 31 
( 1957/58), 98-1 10, a 1 3-page piece on a number system with the irrational base <p,  
the golden mean. This resulted in George's being interviewed by Mike Wallace (of 
60 Minutes fame) for the New York Post. This interview was reprinted in the MAGA
ZINE, 31 ( 1957/58),  282. At the end of the interview Wallace asked: "George, when 
you wake up in the morning, what's the first thing you think about? Mathematics?" 
The student replied: "Oh, don't be silly. I think about breakfast." 

Cecil Rousseau, in "The Phi Number System Revisited," 68 ( 1 995), 283-84, ob
served that since Bergman's 1957 article, "the phi number system has become part of 
the folklore of elementary mathematics and has, for example, appeared as an exercise 
in Knuth's  The Art of Computer Programming [3] . One of the basic results involving 
the phi number system is that every positive integer has a finite expansion." 

Awards and the MAGAZINE The Chauvenet Prizes are the most prestigious and 
venerable of the awards given by the MAA for expository writing. Awarded since 
1 925, they had usually been awarded for papers in the Monthly or the Bulletin of 
the American Mathematical Society, but in 1944 the Chauvenet Prize was given to 
R. H. Cameron for a MAGAZINE article on Fourier transforms. Not until 199 1  was the 
Chauvenet Prize again awarded for a MATHEMATICS MAGAZINE article. This was the 
extraordinary paper by W. B .  R. Lickorish of Cambridge University and Kenneth C.  
Millett of the University of California, Santa Barbara, that explained the new knot 
polynomials of Vaughn Jones ("The new polynomial invariants of knots and links," 61 
( 1 988), 2-23.)  

The Allendoerfer Awards were set up in 1 976 to recognize outstanding exposi
tory articles published in MATHEMATICS MAGAZINE. Bart Braden won this award in 
1986 for his article "Design of an oscillating sprinkler," 58 ( 1 985), 29-38,  in which 
he analyzes the engineering behind the design of a lawn sprinkler that spreads water 
uniformly on a level lawn. An accompanying illustration (our FIGURE 2) provides an 
alternative design. 

Figure 2 A spri n k ler  des ign from 1 985 

Some other award-winning MAGAZINE gems are included in the section on math
ematical themes below. 
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Mathematical themes 

Algebra The MAGAZINE contains relatively few algebra gems, in part because al
gebra played a minor role in the MAGAZINE's early years . 

• In "Remarks on the functional equation f (x + y) = f (x)  + f (y) ," 42 ( 1 969), 
1 2 1-23, Edwin Hewitt and Herbert S .  Zuckerman note that since Cauchy's time it was 
known that the only continuous, additive homomorphisms of the real numbers were 
the linear maps f (x)  = kx . In 1905 , Georg Hamel constructed (many ! )  discontinuous 
homomorphisms of lR and proved that, surprisingly, the graph of each such function is 
dense in the plane JR2 • Hewitt and Zuckerman give an elementary proof of this result, 
without using the axiom of choice as Hamel did. They also show that all solutions to 
the very different looking functional equation f (x + y) = g (x) + h (y) come from, in 
a simple manner, homomorphisms of R 

• In volume 47 ( 1 974), 226-27, Andy Magid of the University of Oklahoma used 
commutative ring theory to prove the following theorem: Every trigonometric iden
tity is a consequence of sin2 x + cos2 x = 1 .  Here "trigonometric identity" means 
an identity in x that has been first simplified to a polynomial identity of the form 
f (sin x ,  cos x) = 0. In a letter to the editor, 48 ( 1 975), 4, Harry W. Hickey noted that 
it is not necessary to use commutative ring theory to prove this theorem; more elemen
tary means will do. 

Calculus and analysis Let us return to the article by Stone. The classical Weierstrass 
approximation theorem [13] asserts that any continuous function on a closed interval 
[a , b] can be uniformly approximated there by a polynomial function. This theorem 
can be reformulated in terms of the algebra C([a , b]) of all continuous functions on 
[a , b] , which contains as a subalgebra the family P of all polynomials in a single 
variable x .  C([a , b]) is a complete metric space under the so-called supremum norm, 
where the distance between two continuous functions f and g is 

d(f, g) =  max l f (x) - g (x) l . XE [a ,b] 

Weierstrass ' s  approximation theorem then asserts that the uniform closure of P is 
C([a , b]) itself or, equivalently, that P is dense in C([a , b]) .  

In 1937 Stone, then at Harvard, gave a generalization of the Weierstrass theorem 
near the end of a very long paper [9] that focused principally on Boolean rings and 
Boolean spaces. The stimulus for the generalization came from a conversation Stone 
had had with John von Neumann who, according to Stone [11 ] , asked the "right" ques
tion. In the following decade Stone improved the original proof, modified and extended 
his theorem, and found, along with others, "many interesting applications to classical 
problems of analysis ." [10] At the end of the decade, Stone, by then ushering in the 
famous "Stone Age" as department chair at the University of Chicago, chose MATH
EMATICS  MAGAZINE for "collecting the relevant material in an expository article 
where everything could be presented in the light of our most recent knowledge." [10] 
Steven G. Krantz in [4] explained that Stone sent this paper to the MAGAZINE "be
cause he had promised them a paper to help them get off to a good start," referring to 
the late 1940s revival of the MAGAZINE by Editor Glenn James. 

Stone's  MATHEMATICS MAGAZINE article on "the generalized Weierstrass ap
proximation theorem," which we now know as the Stone-Weierstrass theorem, was 
published in two parts [10] . In the first Stone extended the classical Weierstrass theo
rem by (a) replacing the interval [a , b] by an arbitrary compact topological space X, 
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and (b) replacing the subalgebra P of polynomials by any subalgebra U of C (X) (the 
continuous functions on X) that "separates points in X," meaning that for any two 
points x and y in X there is a function f in U with f(x) =!= f(y). (Stone used slightly 
older notation and terminology.) He then concluded that the uniform closure of U is 
either C (X) itself, or the ideal of all functions in C (X) that vanish at a particular 
point x0. 

In the second part, Stone extended his generalized Weierstrass approximation the
orem to complex-valued functions and to locally compact topological spaces (like JRn , 
where every point has a compact neighborhood). He gave several applications of his 
theorems to approximate continuous functions by "trigonometric polynomials" (such 
as finite Fourier series), by Laguerre functions, and by Hermite functions. The final 
application of this landmark paper was a proof of the celebrated Peter-Weyl theorem 
on approximating continuous functions on a compact topological group. All in M ATH 
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Figure 3 Marsha l l  H .  Stone 

• Richard Bellman, an applied mathematician who was then at the RAND Corpo
ration, began his article "Inequalities," 28 ( 1 954/55), 21-26, by asserting that mathe
matics "is fundamentally the study of inequalities rather than equalities." Among other 
things he sketched a "most ingenious" proof, using two types of induction, of the arith
metic mean-geometric mean inequality: 

for any positive real numbers a 1 , a2 ,  . • .  , an . The first part of the proof used forward, 
or ordinary, induction to prove In for powers of 2, n = 2, 4, 8 , . . .. The second part, 
which fills in the gaps, featured a backward induction showing that In implies In- t by a 
clever use of the hypothesis In . This proof goes back to Cauchy [1] . Bellman observed 
that this "is perhaps the only application" of this form of mathematical induction, 
but in recent years some compute� scientists have used it. For example, Udi Manber 
uses what he calls reversed induction to prove that certain very dense graphs have a 
Hamiltonian cycle. [6] 

• R. C. Buck, an analyst, discusses how topology can illuminate analysis in "Topol
ogy and analysis," 40 ( 1 967), 71-74. By analysis here he means elementary calculus, 
intermediate calculus, and advanced analysis. For elementary calculus he cites the In
termediate Value Theorem, which is just a consequence of the topological theorem 
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that continuous maps send connected sets to connected sets . For intermediate calculus 
Buck observes that pointwise convergence and uniform convergence give two com
peting topologies for the function space :F consisting of all real-valued functions on 
( -oo, oo ) .  The important question-Is the subset consisting of all continuous func
tions a closed set in F?-then has opposite answers for the two topologies . 

• The set { sin 1 , sin 2 ,  sin 3 ,  . . .  } seems to be dense in [- 1 , 1 ] ,  yet one might expect 
the proof to be difficult. On the contrary, C. Stanley Ogilvy in "The sequence {sin n } ," 
42 ( 1969), 94, gives a two-paragraph proof using only the irrationality of rr .  

• Problems in the MAGAZINE sometimes generate later articles. Problem 7 1 1 in 
1 968 was to show that for any positive numbers a1 , a2 , • • •  , an , 

None of the five solutions presented in "A product of sums," 42 ( 1 969), 1 6 1 -62, ap
plied the arithmetic mean-geometric mean inequality to each sum: 

The most elegant of the five solutions presented applied the Cauchy-Schwarz inequal
ity to 

for a one line proof. 

• Calculus instructors who assign exercises of the form limx�o+ f (x )g<xl ,  such as 

lim (sin x ) tanx and lim (ex+! - e)X ,  x�o+ x�o+ 
may wonder at the ubiquity of 1 as the answer. The article "The indeterminate form 0° ," 
50 ( 1 977), 41-42, by Louis M. Rotando and Henry Kom, explains why; the limit is 
1 whenever f and g are nonzero analytic functions at x = 0 (and, of course, f(x) 
is nonnegative for all positive x sufficiently close to 0), that is, representable by a 
Taylor series there. The article mentions the counterexample limx�o+ xaf ln x ,  which is 
generalized in an earlier Monthly article by G. C. Watson [12] , while the article itself 
gives a counterexample involving e-l /x2 to show that the assumption of "analytic at 0" 
cannot be weakened to "infinitely differentiable at 0." 

Combinatorics 

• An interesting feature of Louis W. Shapiro's "Finite groups acting on sets with 
applications," 46 ( 1 973), 1 36-47, is that it is in the form of a tutorial, with a few key 
definitions and comments interspersed among numerous exercises. Only an elementary 
knowledge of group theory is needed for most exercises, and the article begins with 
the observation that "The concept of a group acting on a set is a small generalization 
of the idea of a permutation group." The twenty-fifth exercise is the P6lya-Bumside 
theorem, which Burnside proved in 1 897 and P6lya applied in 1937 to get the P6lya 
enumeration formula. Many of the applications mentioned in the title are to group the
ory itself, where a group G acts on various sets of subsets of G (such as the orbits under 



118 MATH EMATICS MAGAZI N E  

right multiplication by elements of G) . The three Sylow theorems of group theory, for 
example, are included in the fifty-ninth through sixty-third exercises. 

P6lya's enumeration formula itself is the focus of Alan Tucker's "P6lya's enumer
ation formula by example," 47 ( 1 974) , 248-56. Tucker was a teaching assistant for 
P6lya in a course at Stanford University on combinatorial mathematics in which P6lya 
omitted a proof of his formula and gave only examples . Tucker proceeds similarly, 
showing how, with well-chosen examples, one might discover P6lya's formula. In his 
concluding paragraph he observes, "The importance of our approach is that theory and 
precise mathematical statements have been avoided . . .  in favor of the underlying ideas 
that motivated P6lya." 

Games and puzzles Recreational mathematics has always had a modest role in the 
MAGAZINE. We highlight below several gems that investigate parts of recreational 
mathematics with tools of modem mathematics such as group theory. 

• Flexagons are a part of recreational mathematics yet their inventors were seri
ous research mathematicians or physicists : Arthur Stone, John Tukey, Bryant Tucker
man, and (sometimes serious) Richard Feynman. A trihexafiexagon is a figure made 
by folding a strip of paper into ten equilateral triangles and then pasting the two end 
triangles together (yielding, topologically, a Mobius band) . Finding the symmetry 
group of the trihexafiexagon would be a challenging exercise for a modem algebra 
class .  The answer, found in "Symmetries of the trihexafiexagon," by Michael Gilpin, 
49 ( 1976), 1 89-92, is that the symmetry group is D9 , the group of symmetries of a reg
ular nonagon. A variation of the exercise, for a trihexafiexagon with a design on it that 
enlarges the symmetry group to D18 ,  is given in "The Faces of the Tri-Hexafiexagon," 
by Peter Hilton, Jean Pedersen, and Hans Walser, 70 ( 1997), 243-5 1 . Ethan Berkove 
and Jeffrey Dumont have continued this thread in "It's Okay to Be Square If You're a 
Flexagon," 77 (2004), 335-48. 

• The entire January 1 978 issue of the MAGAZINE was devoted to recreational 
mathematics and games, such as Jerome L. Paul's  "Tic-Tac-Toe in n-dimensions," 
51 ( 1 978), 45-49, which is played on a hypercube. The lead article by John Hor
ton Conway on "A gamut of game theories," 51 ( 1978), 5-1 2, introduces operations 
on games, such as their (disjunctive) sum and (conjunctive) join, and value functions 
on compound games that lead to Conway's  surreal numbers . The issue includes Doris 
Schattschneider's  Allendoerfer Award-winning article "Tiling the plane with congru
ent pentagons," 51 ( 1 978), 29-44. Her survey includes the charming story of how 
several amateurs-including a homemaker, Marjorie Rice, with barely a high school 
knowledge of mathematics-independently discovered new pentagonal tilings after 
reading a column by Martin Gardner in the July 1 975 Scientific American. 

Geometry Geometry has had a prominent role in the MAGAZINE since its inception. 
But the type of problems and theorems discussed has somewhat broadened from those 
of the classical geometries of two or three dimensions. 

• The title of David Singmaster's article "On round pegs in square holes and square 
pegs in round holes," 37 ( 1964), 335-37, almost reveals the question: Which fits better, 
a round peg in a square hole or a square peg in a round hole? Using the ratio of areas 
as the yardstick, simple geometry shows that a round peg fits better in a square hole 
than a square peg in a round hole (as rr /4 > 2/rr) . The generalization to n dimensions 
provides a surprise: the n-ball fits better in the n-cube than the n-cube fits in the n-ball 
if and only if n � 8. The proof of this generalization uses the formula for the volume Vn 
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of an n-ball with radius r ,  

rrn/2 
Vn = rn 

1 ( �  + 1 ) ' 

1 1 9 

where r (x) is the gamma function. The derivation of this formula, by an argument 
"accessible to a multivariable calculus class," is given in Jeffrey Nunemacher's  "The 
largest unit ball in any Euclidean space," 59 ( 1986), 170-7 1 .  

• Carl Allendoerfer's purpose in his "Generalizations of theorems about triangles," 
38 ( 1 965), 253-59, is to describe appropriate generalizations of theorems about 
triangles to theorems about tetrahedra that are "generally unknown" (of the many 
mathematicians he asked, only P6lya knew the generalization described below), even 
though several of them go back to Descartes and Grassmann. The angle-sum theorem 
for a triangle-that the sum of the angles is rr-is a nice example, since any obvious 
generalization is doomed: the sum of the solid angles of a tetrahedron is not a constant. 
The key to a successful generalization involves two steps: 

1 . Reformulating the angle-sum theorem in the equivalent form that the sum of the 
external angles of a triangle is 2rr . 

2. Defining the external angle of a triangle at a vertex not as the angle between the two 
directed sides, but as the angle between the outer normals to these sides. These two 
steps lead to an elegant proof of the generalization that the sum of the external solid 
angles of any tetrahedron is 4rr . And, just as "triangle" in the previous step may be 
replaced by "convex polygon," in the preceding generalization "tetrahedron" may 
be replaced by "convex polyhedron." 

• Standard calculus texts seem not to include Steiner's problem, even though it 
involves minimizing a function of two variables and the answer is appealing. Using 
geometry, Steiner proved that for any acute-angled triangle ABC the point P which 
minimizes PA + PB + PC is such that each side of the triangle subtends an angle of 
1 20° at P. "A note on Steiner's problem," by P. N. Bajaj ,  40 ( 1967), 273, gives a short, 
elegant proof of Steiner's result that uses only simple trigonometry to find the critical 
point of the function f (x , y) = PA + PB + PC when P = (x , y) .  

• Before 1 976 authors in the MAGAZINE were eligible for the Lester R. Ford 
Award (now restricted to Monthly authors) . The last Ford winner in the MAGAZINE 
was "Geometric extremum problems," by G. D. Chakerian and L. H. Lange, 44 ( 1 97 1 ), 
57-69. Among other things the authors provide complete solutions to the problems of 
finding a rectangle of maximum area inscribed in a given triangle or a given ellipse. 
Special cases of these problems are standard exercises in calculus texts : a side of the 
rectangle is assumed to be along the base of the triangle or parallel to an axis of the 
ellipse. Chakerian and Lange use geometry and affine transformations of the plane to 
show that the solutions for the special cases are actually solutions to the more general 
optimization problems. 

• The interesting question of extending Venn diagrams in a nice way to more than 
three sets has stimulated much research; volume 15 ( 1984) of the College Mathemat
ics Journal alone has two articles on the topic by the renowned geometer Branko 
Griinbaum, who also has two such articles in the MAGAZINE, "Venn diagrams and 
independent families of sets," 48 ( 1 975), 1 2-23, and the cleverly-named "Diagrams 
Venn and how," coauthored with J. Chris Fisher and E. L. Koh, 61 ( 1 988), 36-40. 

The first of these discusses various extensions of the classic three-circle Venn di
agram to more sets, using general curves,  convex curves,  polygons, and so on. Venn 
himself in 1 880 asserted that with circles the maximal number of sets that could be rep
resented is 3 while with ellipses the maximal number is 4. This last assertion wasn't 
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proved but was .repeated by many authors, even as recently as I 967. In fact, it's false; 
the maximum number of sets using ellipses is 5 and Griinbaum's first article shows 
such a Venn diagram: 

Figure 4 G ru nbaum's Ven n  d i agram with 5 sets 

• In 1 899, George Pick discovered a nice formula for the area A of any simple 
polygon P whose vertices are lattice points in the plane: 

B A =  I + - - 1 , 2 
where I and B are, respectively, the number of lattice points in the interior and on the 
boundary of P . Here "simple" means that P does not intersect itself. A major theme of 
"Triangulations and Pick's theorem," by R. W. Gaskell, M. S. Klamkin, and P. Watson, 
49 ( 1 976), 35-37, is that "Pick's theorem is not really about area, but a combinatorial 
result which essentially belongs to topology." The article justifies this assertion by 
presenting a two-step proof of Pick's theorem involving 

I .  counting the number of primitive triangles (those containing no lattice points other 
than its vertices) in any primitive triangulation of P, and 

2. showing that the area of each primitive triangle is I /2. 
The main step, (1 ) ,  is accomplished by cleverly gluing two rubber copies of P 

together and inflating this "balloon", then applying Euler's famous topological formula 
V - E + F = 2 to the resulting spherical polyhedron. The upshot is that the number 
of primitive triangles in the triangulation is found to be 2I + B - 2, and this with 
step (2) yields Pick's formula. 

Number theory 

• The article "Some interesting algebraic identities," by William S. McCulley, 34 
( 1960/6 I ), 203-6, presents the evoluton of some identities that are important in number 
theory. It starts with the simple identity 

which expresses a product of two sums of two squares as a sum of two squares .  In 
17 48, Euler generalized ( *) to sums of four squares, getting 

(xt + xi + xi + x�) (yt + Yi + Yi + y�) = zi + z� + z� + z� 
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for suitable z; . The forms in this identity led to Hamilton's quatemions, while Cayley's 
generalization in 1 845 to eight squares 

led to the octonions, or Cayley numbers. This line of generalization stops here, as in 
1 898 Hurwitz proved that such "reproducing forms" exist only for n = 2, 4, and 8 . In 
another direction, Cauchy in 1 82 1 generalized ( *) to products of n squares: 

Note that omitting the second sum on the right side, which is nonnegative, yields 
the Cauchy-Schwarz Inequality. 

• A well-known result from probabilistic number theory is that the probability that 
two integers are relatively prime is 6jrr2 = 1 /� (2) , where � (2) = 2::1 1 jn2 is the 
value of the Riemann Zeta Function at 2. Alan H. Stein generalizes this result in "On 
almost relatively prime integers," 48 ( 1 975), 1 69-70, by asking what is the probability 
that the greatest common divisor of two integers is in X, for any subset X of positive 
integers? His answer is the proportion of � (2) contributed by integers in X. More 
precisely, the probability is (Lnex 1 jn2)/� (2) . For example, the probability that two 
integers have greatest common divisor 2 is one-fourth of the probability that they are 
relatively prime, or about 0. 1 5 . 

• O f  Paul Erdos's 1 5 14 mathematical papers, four appeared i n  the MAGAZINE, be
ginning in 1 975. In "Some unconventional problems in number theory," 52 ( 1 979), 67-
70, Erdos provides "a melange of simply posed conjectures with frustratingly elusive 
solutions." An example: "Forty years ago I asked: does xx yY = zz have any nontrivial 
solutions in integers? Chao Ko [in 1 940] found infinitely many solutions ; perhaps he 
found them all." Another example: "It is extremely difficult to obtain results on the 
difference of consecutive primes.  A well-known conjecture of Cramer states that 

r Pn+l - Pn l ���p 
(log n )2 = · 

This conjecture is completely unattackable by present day methods and I expect that it 
will stay in this class for a very long time." Erdos's prediction may well be correct, but 
Helmut Maier and Carl Pomerance [5] have evidence that Cramer's conjecture may 
not be the right one. 

Probability The sample below is representative of many other MAGAZINE articles 
that answer interesting questions on probability by elementary methods, often with 
surprising conclusions. 

• A mathematics major who is beginning a first course in either probability theory 
or measure theory would do well to read Truman Botts 's tour de force, "Probability 
theory and the Lebesgue integral," 42 ( 1969), 105-1 1 . Botts starts from scratch-a 
single coin flip or die roll for discrete probability, and a single spin on a rotary dial for 
continuous probability-and gently works his way to probability spaces and Lebesgue 
measure. Along the way he offers valuable insights on the advantages of the Lebesgue 
integral over the Riemann integral (it integrates more functions), and the reasons why 
the Lebesgue integral is a natural tool in probability theory while the Riemann integral 
is "inadequate." 
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• With a large class that has seen the ordinary birthday problem one might try the 
variation discussed in "Another generalization of the birthday problem," by J. E. Ny
mann, 48 ( 1 975), 46-47. For a class of n students, with n :::: 23, suppose that students 
were asked in succession to call out their birthdays ;  how many such students would 
be needed before the probability of a birthday match with someone in the whole class 
would be greater than or equal to 1 /2? The answers are surprisingly small : only 7 
for n = 40 and 3 for n = 86, for example. The derivation of the relevant probability 
formula is easy and is quite similar to that of the probability formula for the ordinary 
birthday problem. 

A seemingly more difficult derivation, for expected value instead of probability, 
is given in "A direct attack on a birthday problem," by Samuel Goldberg, 49 ( 1 976), 
1 30-3 1 .  The author finds that the expected number of different birthdays among 
n people is simply 

365 - -- = 365 - 365 -364n ( 364) n 

36Sn- l 365 

Teaching and pedagogy It is probably safe to say that MAGAZINE interest in pri
marily educational issues has somewhat declined over the years, perhaps since there 
are now many other venues for such articles . Of course, any contributions after one by 
George P6lya-the first gem below-would seem to indicate a decline ! 

• Ten years before the publication of George P6lya's How To Solve It, a much 
truncated version of his advice on problem solving, 9 ( 1934/35), 1 72-74, appeared in 
the MAGAZINE. P6lya was then still a professor in Zurich, but for MAGAZINE readers 
it was a preview of what was to come. 

• In the mid-50s, a regular section of the MAGAZINE was called "Teaching of 
Mathematics ." The article "The group method," by S. Birnbaum and K. Ommidvar, 28 
( 1954/55),  277-79, advocated a method of instruction combining "dynamic group ac
tivity with individual responsibility" that is now known as the method of small groups .  
A commentator in  the next issue wrote that the method was "standard equipment" in 
his electronics lab courses, where he found the optimum group size to be 3. In the 
1 970s small-group instruction in college-level mathematics was rediscovered by writ
ers in other MAA joumals like Neil Davidson [2] and Julian Weissglass [14] . 

The Prob lems section 

Problems have been presented in the MAGAZINE almost since its inception. A separate 
"Problem Department" was initiated in issue 6 of Volume 5 ( 1 930/3 1 ) .  

Skimming over the Problems sections of the MAGAZINE, one finds the names of 
many well-known problem solvers or problem posers . But we also find some names 
we might not expect: David Blackwell, Eugenio Calabi, George B. Dantzig, Jr. , Louis 
de Branges, and Mark Kac. 

In 1 954, the master problem poser Murray Klamkin asked readers to show that 

oo ( - l )nxn 
F (x , y) = L n+l + 

n=O a y 

is symmetric in x and y .  George P6lya, by then a professor emeritus at Stanford, sent 
in a solution (the only one, except for the proposer's), 28 ( 1 954/55),  235-36. It is 
not surprising that the author of How To Solve It should break down his solution into 
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three parts : ( 1 )  a heuristic consideration in which he outlines a natural approach to 
the problem, (2) a proof, and (3) a critique in which he discusses values of a , such as 
a = 0, for which the statement is not true. 

Twenty-five years later, another Klamkin problem had only one noncomputer solu
tion submitted, and this time the solver was none other than Paul Erdos ! The problem 
asked if there exists a prime number such that if any digit (in base 1 0) were changed 
to any other digit then the resulting number would be composite. Erdos answered yes 
and proved a slightly stronger result. Further, he proposed several questions of his own. 
The solution, listed as "Erdos and the computer," 52 ( 1 979), 1 80-82, included 294,001 
as the smallest such prime that was found by a computer search. 

Epilogue Will we see another paper like Stone's  in the MAGAZINE? Probably not. 
With the transfer of the MAGAZINE to the MAA in 1 960, the Board of Governors 
specified that the "level of the MAGAZINE shall be below that of the Monthly but 
above that of the Mathematics Teacher." We hope that the articles highlighted here 
will encourage readers to delve into the back issues of the MAGAZINE and find for 
themselves some additional "gems." A collection of papers from the MAGAZINE, with 
commentary, will be published in 2005 in the MAA's Spectrum Series under the title 
A Mathematics Magazine Reader. 
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Understanding the classical parity theorem for permutations-that a permutation can 
be written as an odd or even product of transpositions, but not both-requires little, 
if any, mathematical background. Our approach will be familiar to anyone who has 
played the game of unscrambling jumbled words. For instance, can you transform the 
scrambled word urcle into an everyday English word, step-by-step, where each step 
consists of a single switch of a pair of letters? To introduce notation, here is a way 
that it can be done in two steps: ( 1 ,  4)urcle = lrcue, (2, 4) lrcue = lucre (that is, profit 
or gain) . The notation Y = (i , j )X will be used henceforth to indicate that the letters 
of X in positions i and j are exchanged to produce word Y . In that case, of course, 
X =  (i, j )Y . 

There i s  something mysterious about the way the human brain accomplishes such 
pattern recognition. Sometimes it happens in a stroke, without any sense of intermedi
ate steps like ( 1 ,  3)urcle = crule, (4, 5)crule = cruel. We'll probe this mystery further 
in Application 2, below. For now, the meaning of the parity theorem becomes easy to 
state : There are infinitely many ways to transform urcle into cruel using a sequence 
of transpositions (pair-switches). Efficiency and intelligence are irrelevant. Monkeys 
making haphazard pair-switches will certainly create the word cruel, over and over, 
long before monkey typists create a work of Shakespeare. The method above used 
two transpositions :  an even number. The parity theorem says that any other method, 
however many steps it takes, must also use an even number of transpositions .  The 
analogous result holds true in all cases requiring an odd number of pair-switches. 

Here is another puzzle : As accessible as the meaning of the parity theorem is, the 
mainstream proofs are tricky, unintuitive, and nonconstructive-in other words, ele
gant in a way that only a mathematician can appreciate. There are two standard ap
proaches .  The first requires careful examination of the product ni:Sj <k:Sn (Xj - Xk) for 
a given ordering x 1 , x2 , • • •  , Xn of the integers 1 ,  2,  . . .  , n [5, 6, 11 ] .  The second uses 
the fact that a transposition acting on a product of disjoint cycles changes the number 
of disjoint cycles in the product by exactly 1 [2, 4, 7] . Both approaches presuppose 
some knowledge of basic group theory and terminology. But what about "the rest of 
us?" For example, students in the typical liberal arts mathematics course sometimes 
need a little dynamite to rouse their interest in things mathematical . We provide some 
in the form of a baffling new take on the card game Three Card Monte, as our Appli
cation 1 . 

One of our purposes is to provide a proof of the parity theorem that is pictorial, 
constructive, and immediate in a way that the traditional proofs are not. We assume 
no knowledge of group theory, graph theory, or combinatorics; however, we won't 
hesitate to point out connections where appropriate. 

124 
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Transposition graphs The treatment of the six permutations of a three-letter word 
contains all the essentials.  Let this word be abc. FIGURE 1 shows a diagram with 
features of both a graph and an array. It contains six vertices (points, the 3 ! = 6 per
mutations of abc) arranged in rows, which are numbered 0, 1 ,  and 2. The vertices are 
labeled by the permutations of abc. Two vertices are joined by an edge (line) if and 
only if one word is obtained from another by a transposition. Each edge is labeled with 
the transposition that activates this switch. We call this type of diagram a transposition 
graph. 

0 

2 

a b c  

c a b  bca 

Figure 1 The transpos it ion graph G3 

A product of transpositions corresponds to a path in this graph starting from abc 
and ending at another word, or returning to abc. An even (odd) permutation is defined 
as one that can be written as a product of an even (odd) number of transpositions. Such 
a path may wander arbitrarily before ending at one of the six vertices. However, as we 
follow the path step-by-step from row 0 we may say, with each move along an edge to 
a new row, "odd, even, odd, even, etc." according to the parity of the row number. The 
parity of the row number matches the parity of the number of transpositions (edges) in 
any product. Consequently, it is impossible for one path to a given word to use an odd 
number of edges while a second path to the same word uses an even number of edges. 
This is the complete argument, even for the general case to follow. 

Remark 1 Readers familiar with graph theory will note that FIGURE 1 shows a re
drawing of K<3• 3l , the complete bipartite graph. The bipartition consists, respectively, 
of the vertices in the even- and odd-numbered rows. The "first theorem of bipartite 
graph theory" (that every cycle in such a graph has even length [2] ) is illustrated by 
the "odd, even, odd, even, . . .  " procedure described above. Group theorists will see a 
picture of the alternating group A3 in the even-numbered rows of FIGURE 1 . 

Since the parity theorem is an immediate corollary of the fact that the general ver
sion of FIGURE 1 has a similar structure, it makes sense to define a few graph-theoretic 
terms. A graph is a structure like FIGURE 1 consisting of vertices, pairs of which are 
connected by edges. Two vertices are called adjacent if they are joined by an edge. A 
path is a sequence of vertices such that every pair of successive vertices is adjacent. 
The degree of a vertex is the number of edges issuing from it. A graph is called regular 
when all the vertices have the same degree. Finally, a graph is bipartite when its vertex 
set can be partitioned into two nonempty subsets such that each edge joins a vertex in 
one subset to a vertex in the other subset. 
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First, we give an informal description of how the method used to create FIGURE 1 
is extended to create a transposition graph for a word with n distinct letters. Position 
this word in row 0. Apply every possible transposition once and write the resulting 
n (n - 1 ) /2 words as vertices in row 1 located below row 0. Connect each of the ver
tices in row 1 to the word in row 0 with an edge labeled by the appropriate trans
position. Next, apply the same process to each word in row 1 ,  writing only the new 
(not-yet-written) words in row 2, below row 1 .  If transposition r applied to word X 
in row 1 results in word Y in row 2, draw an edge from X to Y and label the edge 
with r. If r returns X to row 0, do nothing (the labeled edge has already been drawn) . 
Continue this process, filling in the rows and labeling the edges, until no new words 
can be created. The graph so obtained will be denoted by Gn . Let Rn denote the array 
of words of Gn , that is, Gn with all vertices, edges, and edge labels removed (as shown 
FIGURE 2). 

A systematic method Drawing G 4 , with its 24 vertices and 72 edges, will be very 
tedious if you proceed by the informal instructions of the last paragraph. However, the 
object of immediate interest is R4 in FIGURE 2, below, and it turns out that the arrays 
Rn can be constructed recursively in a straightforward way. For a concrete example, 
consider R4 : 

0 abed 
1 baed chad acbd dbca adcb abdc 

2 cabd bead dacb bdca bade dbac cdab cbda dcba ad be acdb 

3 dabc cdba cadb dcab bdac bcda 

Figure 2 The array R4 

First, the fourth letter d is appended to each of the six original words in R3 • Three 
new positions are created in row 1 to allow for the three transpositions ( 1 ,  4) , (2, 4) , 
(3 , 4) operating on the word in row 0. This is where dbca, adcb, and abdc come from. 
Next, nine new positions are created in row 2 to allow for the same three transpositions 
acting, respectively, on 5acd, chad, and acbd. Finally, a new row 3 is added to allow 
for the three transpositions acting on cabd and bead. The result is the array R4 with 
four rows containing all 4! = 24 permutations of abed. 

The following general construction lists all the permutations of a word with n dis
tinct letters classified by the rows according to the minimum number of transpositions 
in the product. Suppose that Rn has been constructed. Let L (n , k) denote the number of 
words in row k of Rn , k = 0, 1 ,  . . .  , n - 1 .  (We' ll also define L (n , - 1 )  = L (n , n) = 

L (n , n + 1 ) = · · · = 0.) To construct Rn+ l : 
( 1 ) Introduce the (n + l ) st letter and append it to every word in Rn . 
(2) Augment each row k of Rn with nL (n , k - 1 ) additional positions .  

(3) Introduce row n containing nL(n , n - 1 ) positions . 

(4) Insert into the new positions of row k the words obtained by applying the n trans
positions ( 1 ,  n + 1 ) ,  (2, n + 1 ) ,  . . .  , (n , n + 1) to each of the L (n ,  k - 1 ) words 
in row k - 1 ,  for k = 1 ,  . . . , n .  

Remark 2 The recurrence relation used in  the construction i s  based on  the one asso
ciated with the unsigned Stirling numbers of the first kind <Y (n , k) = (- l )n+ks (n , k) . 
The signed Stirling numbers s (n ,  k) are the coefficients of xk in the product 

x (x - 1 ) · · · (x - n + 1 ) .  
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Much less well known than the binomial coefficients, the a (n , k) have a similar recur
rence relation a (n + 1 ,  k) = a (n ,  k - 1 )  + na (n ,  k) . For instance, if you were won
dering how many words are in row k of Rn , the answer is a (n , n - k) , which is not 
surprising in view of the fact that L (n + 1 ,  k) = L (n , k) + nL (n ,  k - 1 ) .  Comtet [3] 
gives a discussion of Stirling numbers of the first and second kinds, including nu
merical tables. For a combinatorial approach to Stirling numbers, see the article by 
Benjamin et al . in the April 2002 MAGAZINE [1] .  

The graph Gn is recovered from Rn by drawing at  each vertex n (n - 1 ) /2 = (�) 
edges labeled by the appropriate transpositions .  The following theorem says that G n is 
very much like G3 . 

THEOREM. The transposition graphs G n generated by the preceding recursive con
struction have n !  distinct words as vertices and G)2 (n - 2) ! edges. Each edge connects 
a vertex in row k to a vertex in row k + 1 for k  = 0, 1 ,  . . .  , n - 2. Therefore, G n is a bi
partite graph with bipartition consisting, respectively, of the odd- and even-numbered 
rows. Gn is a regular graph of degree (�) . 
Proof The first interesting case is G3 , for which all the claims are easy to verify. 

To proceed by induction, we assume that G n has all the characteristics stated in the 
theorem and exemplified by G3 in FIGURE 1 .  Then we prove that Gn+l inherits this 
same structure from Gn . Let z be the (n + l ) st letter added to Gn in order to create 
Gn+l and let P, Q, X, and Y denote words in Gn+l · 

We'll deal with some routine issues first, like the number of vertices in Gn+l · Let 
Hn+l  denote the newly created part of Gn+ l •  including edges connected to Gn . The Gn 
piece contributes n !  vertices by itself and the construction supplies n · n !  new vertices 
to Hn+l ·  In all, n !  + n · n !  = (n + 1 ) !  

All the words in G n are unique by assumption and remain so when z i s  appended to 
each one. But, are all the new words in Hn+ l  unique? To show that they are, suppose X 
and Y are in Hn+l and X =  Y .  Then X =  (i , n + l )P for some P in Gn , and thus X has 
z in position i .  If X = Y = (j ,  n + 1) Q, then we must have i = j and thus P = Q . It 
follows from the induction hypothesis that X and Y cannot be words located at distinct 
vertices ; hence, all the words of G n+ 1 are unique. This uniqueness,  now established in 
general, allows us to say that the vertex degrees of any transposition graph Gn are all 
(�) , since this is the number of ways of choosing a pair of letters to transpose. By the 
handshaking lemma (a.k.a. "the first theorem of graph theory") the sum of the degrees 
is twice the number of edges [2] . Solving for e in n ! G) = 2e yields the number of 

edges e = � G) = G)\n - 2) ! .  
That takes care of the routine issues. It remains to show that each edge in Gn+l 

connects row k to row k + 1 for some k = 0, 1 ,  . . .  , n - 1 .  Edges in G n are assumed 
to connect adjacent rows, and appending z does not change this .  The uniqueness ar
gument offered above proves that every X in Hn+ l  i s  adjacent to a unique P i n  Gn . 
Therefore, every edge from G n to Hn+ 1 connects a vertex in row k + 1 to a unique 
vertex in row k for some k = 0, 1 ,  . . .  , n - 1 .  Finally, consider edges from Hn+ l  to 
Hn+ l · We show that X and Y adjacent in Hn+l  are matched by P and Q adjacent in 
Gn . In fact, the adjacency of P and Q is necessary and sufficient for the adjacency of 
X and Y .  Consider three exhaustive cases, in which X and Y belong to Hn+ 1 and P 
and Q belong to G n :  

(i) If X =  (i , n + l ) P ,  Y = (j, n + l ) Q , then Y = (i , j ) X  if and only if Q = 
(i , j )P . 

(ii) If X =  (i , n + l ) P , Y = (i , n + l ) Q , then Y = (k, n + l ) X  i f  and only i f  Q = 
(i , k) P , i =f. k. 
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(iii) If X = (i, n + l )P , Y = (i , n + l ) Q, then Y = (k, m )X if and only if Q = 
(k , m)P , i =j= k. 

This matching of edges is illustrated in FIGURE 3, below. In general, observations (i)
(iii) assure that edges in Hn+I connect adjacent rows. Were it not so, (i)-(iii) would 
imply that there are corresponding adjacent vertices in G n that are not a row apart, 
contradicting the induction hypothesis. 

This completes the proof of the theorem. • 

p abed 
" " 

" " " 
( 1 ,2) ",( 1 ,3) " " " " 
Q1 baed Q2) chad 

I 1 (3,4) 
I 

(3,4) I 
I /..-
1 ( 1 ,�--- // / 
I /..-
.,.- cbda 

r, r2 

(2,3) 

Figure 3 plain: case ( i ); dashed : case ( i i ) ; bold : case ( i i i ) 

abdc 

Remark 3 Early in the proof we determined the number of edges of G n . A more inter
esting question concerns the number of edges joining two adjacent rows. Concretely, 
in how many ways can all the words obtained by a minimum of m transpositions be 
transformed into all the words obtained by a minimum of m + 1 transpositions by ap
plying one more transposition? Using the regularity of Gn , it is not hard to show that 
the number of edges connecting row n - k to row n - k - 1 is 

(- lr+k (n) t s (n , j ) . 2 j = l  

The s (n , k ) are the signed Stirling numbers of the first kind cited i n  Remark 2 , above. 
Transposition graphs are nested structures for visualizing permutations and the way 

they stand in relation to each other by way of transpositions. For example, the stan
dard result concerning the number of elements in the alternating group An of even 
permutations is available immediately by induction: The even rows of G n contribute 
n !/2 vertices to the even rows of Gn+J ,  while the odd rows of Gn contribute n · n ! /2 
vertices to the even rows of Gn+I · Thus, there are 

even permutations in Gn+l · 

n !  n !  (n + l ) !  
2 + n · 2 = --2-

And, finally, there is the classical parity theorem for permutations, which requires 
no proof since it has already been given-replace 6 by n-in the paragraph preceding 
Remark 1 ,  above. We state it as a corollary of the theorem. 
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COROLLARY. Every permutation on n distinct symbols a , b , c , . . .  can be written 

as a product of either an even number of transpositions or an odd number of transpo
sitions, but not both. 

Application 1-Three Card Monte We'll assume that the following demonstration 
is taking place in an undergraduate abstract algebra or liberal arts math course. Explain 
to the class that to win the shady card game Three Card Monte a player must simply 
pick out the single black card, say, the ace of spades, from the other two red cards 
after the three cards have been rearranged repeatedly, face down. In full view, the three 
cards are placed face down in a row. One volunteer will be the player who thinks she 
can successfully track the black card. The second volunteer, a monitor, will verify that 
the switching is done according to two rules :  First, the cards must always remain in a 
row. Second, there are only three legal switches : first and second cards, first and third 
cards, and second and third cards. The same move can be repeated, and the moves 
need not be done in any particular order. Without making it conspicuous, you place the 
black card farthest to the left, with a red two in the middle, and a red three last. You 
refer to them simply as the black and red cards, but you must remember the original 
positions of all three. 

Ask a student to choose a number between 1 0 and 20 to serve as the total number 
of switches made during the game. The monitor will verify that the moves are legal 
and that the total number of switches is correct. You begin moving the cards nice and 
easy, reminding the player to follow the black card . . .  then, suddenly, well before the 
required number of switches, you stop. Turn your back to the cards and ask the player 
to make two switches. It gets more diabolical. Turn around and ask the player to turn 
her back in order to let you make two switches. Then, both of you face the cards and 
you complete the remaining switches according to the chosen number. Finish by telling 
the player that you know where the black card is and that she must pick it up. But, this 
is preposterous since each of you failed to see two switches ! Nevertheless, insist that 
you are communicating its position to her telepathically. Her hand may be guided to 
the ace by telepathic force! She turns over a card. If it is the ace of spades, she wins 
and you are indeed a telepath, which will probably happen about a third of the time. If 
the chosen card is not the ace of spades ,  you pick the ace up and show it to the class as 
promised. 

How is it done? Consider FIGURE 1 where the roles of a, b, and c are played, 
respectively, by the ace of spades, two of hearts, and three of diamonds. There is a 
simple mnemonic for discriminating the even-rowed permutations from the odd-rowed 
permutations. The permutations in row 1 have exactly one card in its original position. 
The permutations in the even rows have either all the cards in their original position or 
none of the cards in their original position. Hearing the announced number of switches 
(even or odd) and seeing one card enables you to deduce the identities of both face
down cards. 

Application 2-JUMBLE@ We return to an example akin to the urcle of the intro
duction, but this time with a nine-letter word (which would appear in row 5 of G9) : 

dieslcamp. 
According to Remark 3 , there are 827,856 edges above row 5 in G9. In years of class
room experience no one has ever unscrambled dieslcamp, a quite ordinary English 
word, at this initial stage. (I tell students that dieslcamp is a bucolic place where tired 
train engines are sent in the summer for recuperation.) On the other hand, a computer 
could easily solve the problem. The Steinhaus-Johnson-Trotter algorithm [8, 9, 10] 
lists all the permutations using transpositions of adjacent letters. The list corresponds 
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to a path through Gn that visits every vertex exactly once (a Hamiltonian path). Armed 
with a sufficiently large dictionary, a computer could check all 9! = 362, 880 permu
tations of dieslcamp and find the matching word, possibly before you read to the end 
of this sentence. 

As with chess-playing computers, what is interesting is that human brains do not 
seem to solve the problem this way. Certainly, transposition graphs will add no insight 
into how human brains solve the problem. However, we will let you experience for 
yourself the highly discontinuous "aha !"  moment-the quantum leap-of recognition 
by playing the following game. Since I myself know the mystery word, I ' ll switch 
pairs of letters one at a time so that the correct letter is put in the correct place moving 
from left to right. Here 's the first switch: 

mieslcadp. 

The first letter of the unscrambled word is m. We have just moved up one row in G9 
(if not, four more switches will create the mystery word but it won't  be in row 0 ! ) .  If I 
continue to transpose letters to their correct positions, then at some point the mystery 
word will snap into focus. Incidentally, the second letter i is already in the correct 
position. Do you see it now with a sudden flash of insight? If not, we make the third 
letter correct: 

miselcadp. 

In a typical classroom experiment this is the point at which two or three hands shoot 
up, signaling recognition of the mystery word. Why not the whole class? Is the reader 
not yet at cognitive breakthrough? With one more switch, see how the cognitive blind 
spot vanishes: 

misplcade. 

You might have guessed it would be this word, as so many letters have been treated 
this way from the beginning of our discussion. 
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Proof Without Words :  Can d i do's I denti ty 
G i acomo Candido, 1 87 1 -1 94 1  

1 .  

2. 

Jtr = E}� 
3 . 

Note: Candido employed this identity to establish 

2 xy 

[F; + F;+I + F;+2f = 2 [F: + F:+I + F:+2] ,  

where Fn denotes the nth Fibonacci number. 

--ROGER B .  NELSEN 
LEWIS & CLARK COLLEGE 

PORTLAND OR 972 1 9  
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Max imi z i ng  the Chan ces of a Color Match 
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A classroom experiment In a classroom with seats arranged in a rectangular grid, 
each student is given an individual list of n colors, from which each student is to choose 
one color at random. The lists may vary from student to student. Any pair of lists may 
overlap and could even have all n colors in common. According to your intuition, are 
the following statements true or false? 

1 .  The probability that some pair of students will pick matching colors is greatest if 
all lists are identical. 

2. The probability that some pair of adjacent students will pick matching colors is 
greatest if all lists are identical. (Two students are said to be adjacent if they are 
next to one another in a row or one is immediately in front of the other.) 

For most of us, our intuition says that both are true. But, surprisingly, only the first 
one is ! Try to find a counterexample to the second statement before reading any further. 
Hint: there is a simple one with only six students and n = 2. As a further challenge, 
prove that the first statement is true. 

A counterexample The situation described in our experiment can be represented by 
a graph, in which the vertices (dots) represent students and edges (lines) indicate ad
jacent students .  For example, FIGURE 1 shows a class of six students (a , b, c, d, e, f) 
seated in two rows of three each. We first give all six students the same list of two 
colors (which we'll represent as numbers), say { 1 ,  2 } ,  and compute the probability that 
two adjacent students will pick the same color. After this ,  we will see that it is possible 
to improve upon this probability by giving the students different lists . 

a b c 

{ 1 ,2 }  { 1 , 2 }  { 1 ,2 }  

{ 1 ,2 }  { 1 ,2 }  { 1 , 2 }  
d e f 

Figure 1 S ix  students with i dentical  l i sts 

Before doing so, however, it is convenient to introduce a bit more terminology. A 
coloring is an assignment of one color to each vertex from its list. In our example, this 
corresponds to each student picking a color from his or her list. If two adjacent vertices 
are assigned the same color, we say there is a match. A proper coloring is a coloring 
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with no matches .  So our goal is to find a set of lists that maximizes the probability of 
obtaining a match, or, equivalently, has as few proper colorings as possible. 

Now let's go back to FIGURE 1 and compute the probability of getting a match. 
There are 26 possible ways to color the graph. Out of these, there are exactly two 
proper colorings:  assign color 1 to a , c, e and color 2 to b, d , f, or vice versa. So 
the probability of obtaining a match is (26 - 2)/26 . What matters here is that it's less 
than 1 .  

In FIGURE 2, on the other hand, the probability of getting a match i s  1 !  To see why, 
try to find a proper coloring, and you'll find that it's impossible. Start with vertex b, 
and assign color 1 or 2 to it: 

Case 1. Pick 1 for b. Then, to avoid a match, we must pick 3 for a, and therefore 2 
for d, and 1 for e,  which gives a match between b and e . 
Case 2. Pick 2 for b. Then, to  avoid a match, we must pick 3 for c, and therefore 1 

for f, and 2 for e, which again gives a match between b and e . 
So,  if  there are six students seated in  two rows of three each, using this set of  lists 

guarantees that two adjacent students will pick the same color ! We would have no 
such guarantee if we gave every student the same list. 

a b c 

{ 1 ,3 }  { 1 ,2 }  { 2,3 } 

{ 2,3 } { 1 ,2 }  { 1 ,3 }  
d e f 

Figure 2 A counterexample  

Other graphs A natural question to ask now is :  What about other class sizes and 
seating arrangements ? If we are trying to maximize the probability that two adjacent 
students pick the same color, when is it wise to give everyone the same list of colors? 
Or, more generally, for which graphs does having identical lists maximize the proba
bility of getting a match ? Let's give such graphs a name: a graph is n-monophilic if no 
set of n-color lists has a greater probability of yielding a match than the set with all the 
lists equal. 

With this definition, we can restate our question as : 

QUESTION 1 .  For n � 2, which graphs are n-monophilic ? 
The following theorems offer some partial answers. Only Theorem 1 is proved in 

the printed version of this paper; proofs of the remaining theorems can be found online 
at the MAGAZINE website, www . maa . org/pubs/mathm.ag . html. 

Theorems 2 and 3 have short and easy proofs, and we encourage you to prove them 
yourself; hints are provided after their statements. The proofs of Theorem 4 (perhaps 
surprisingly) and Theorem 5 are more involved. 

Some of the results in this paper are similar to those of Erdos, Rubin, and Taylor 
[2] . We thank Thomas Hull at Merrimack College and Douglas West at the University 
of Illinois at Urbana-Champaign for bringing this similarity to our attention. 

THEOREM 1 .  For every n � 2, there exists a graph that is not n-monophilic. 
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If you are not familiar with common graph theory terminology, the following def
initions will be helpful for the remaining theorems. A graph is said to be complete if 
every pair of vertices is connected by an edge. A path is a sequence of distinct ver
tices v 1 , v2 , • • •  , vk such that every pair of consecutive vertices { vi ,  vi+d is connected 
by an edge. A graph is connected if for every pair of vertices { v ,  w }  there is a path 
v 1 , v2 , • • •  , vk with v1 = v and vk = w . A tree is a graph in which every pair of ver
tices { v ,  w }  is connected by exactly one path. A cycle is a sequence of distinct vertices 
v 1 , v2 , • • •  , vk such that every pair of consecutive vertices { vi ,  vi+ d. as well as { Vt . v d ,  
i s  connected by  an edge. A cycle i s  even i f  it has an even number of  vertices. For ex
ample, the graph in FIGURE 2 contains three even cycles, two of length 4 and one of 
length 6. 

THEOREM 2 .  Every complete graph is n-monophilic for all n :::: 2. 
Hint for proof: Do a direct counting argument to show that the graph Km has at 

least n (n - 1 ) · · · (n - m + 1 ) proper colorings for any set of n-color lists, and using 
identical lists for all vertices achieves this lower bound. 

As a fun exercise, find the fallacy in the following wrong proof: 

For any given pair of vertices, the probability of getting a match between those 
two vertices is greater when they have identical lists than when they don't .  There
fore, the probability of getting a match for the graph is greater when all the lists 
are identical.  

To convince yourself that the above argument is incorrect, just note that the same 
proof would apply to any graph; but we have already seen that not every graph is 
n-monophilic . Can you pinpoint exactly which step in the above argument is incorrect? 

If, in the classroom experiment, we are looking to maximize the probability that two 
students-any two, not just adjacent ones-will pick the same color, then, according 
to Theorem 2, we should do exactly as our intuition says: give everyone identical lists . 

THEOREM 3 .  Every tree is n-monophilic for all n :::: 2. 
Hint for proof: Show that if G' is obtained by adding one new vertex and connecting 

it to a vertex of a graph G, then G' is n-monophilic if and only if G is .  

THEOREM 4 . Every cycle is n-monophilic for all n :::: 2. 
Thus, if students are seated around a round table, giving everyone the same list 

maximizes the probability of two adjacent students getting a match. 
For the next theorem, we need to refer to a particular graph called K2,3 , which is 

depicted in FIGURE 3. This nomenclature is explained in the last section, where we 
prove Theorem 1 .  

M [Z]  
Figure 3 Two d i agrams of the graph K2 ,3  

THEOREM 5. A connected graph is not 2-monophilic if and only if all its cycles are 
even and it contains at least two cycles whose union is not K2, 3 · 
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With regard to seating arrangements, Theorem 5 implies that in a typical class, 
where the students are seated in rows and columns, giving everyone the same pair of 
colors will often not maximize the probability of getting a match ! If the students aren' t  
trying to avoid sitting next to each other, then there likely exist at least two cycles. And 
the students' being seated in rows and columns guarantees that all cycles are even and 
no two cycles have K2, 3  as their union (can you see why?). 

The Dinitz Problem The Dinitz Problem, which was open for fifteen years before 
finally being solved by Galvin [3] in 1 994, is as follows. 

Suppose there are n2 students sitting in a rectangular grid of n rows and n columns, 
each with a list of n colors . Is it always possible for each student to pick a color from 
his or her list in such a way that no two students in the same row or the same column 
end up with the same color? 

As an example, consider the special case when all the color lists are identical, say 
{ 1 ,  2, . . .  , n } . Then there is a simple solution, as shown in FIGURE 4. Our intuition 
might suggest that if the students can pick distinct colors in each row and each column 
when all the lists are identical, then they should also be able to do so when the lists 
aren't  all identical .  Galvin showed that this is indeed the case. 

1 2 
2 3 

n - 1 
n 

n 
1 

n 1 n - 2 n - 1  
Figure 4 A spec i a l  case of the D i n itz Problem 

Let's  represent the students with a graph Gn , with n2 vertices in a rectangular grid 
and edges connecting any two vertices in the same row or the same column. Readers 
may recognize Gn as the Cartesian product Kn x Kn . FIGURE 5 shows G3 as an ex
ample. Then the Dinitz Problem asks whether or not we can find a proper coloring of 
Gn for any set of n-color lists assigned to the vertices . 

Figure 5 The graph G3 = K3 x K3 

The idea of coloring all the vertices of a graph all from a single list has been around 
for a quite a while (it is, for example, related to the Four Color Problem). In 1 979, 
Erdos, Rubin, and Taylor [2] generalized the Dinitz Problem to the question of col
oring vertices of arbitrary graphs from different lists of colors . They called a graph 
n-choosable if, given any set of n-color lists for its vertices, one can always find a 
proper coloring. "List coloring," as it's sometimes called nowadays, has become a 
very active field since then. 
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It was also the Dinitz Problem that led u s  to the notion of n-monophilic graphs.  
Recall that in the special case when all the color lists are identical, there is a proper 
coloring of G n-a "matchless coloring," so to speak. So if we randomly assign a color 
from the same list to each vertex, the probability of getting a match is less than 1 .  
Thus, if one could prove that Gn is n-monophilic, it would follow that for every set 
of n-color lists the probability of getting a match is less than 1 .  This would mean 
there always exists a proper coloring, that is, Gn is n-choosable, which would answer 
the Dinitz Problem. By the same reasoning one sees that for any n-colorable graph 
(that is, a graph with a proper coloring from one n-color list) , n-monophilic implies 
n-choosable. The converse, however, is not true in general. Galvin [3] proved that Gn 
is n-choosable. But this doesn't  tell us whether Gn is n-monophilic . This is a special 
case of Question 1 :  

QUESTION 2 .  Is the graph Gn n-monophilic ? 

Examples of non-n-monophilic graphs We now prove Theorem 1 ,  which asserts 
the existence of non-n-monophilic graphs for every n ::=:: 2. To construct examples of 
sech graphs, we need the following definition. 

The complete bipartite graph on m , n vertices, denoted Km,n • is a graph with ver
tices v 1 , • . •  , Vm and WJ . . . .  , Wn , where every v; is connected to every w j by an edge, 
and there are no other edges. FIGURE 6 shows a picture of K2,4 (ignore the color lists 
for now) and FIGURE 3 shows K2,3 . 

{ 1 , 2 }  { 3 ,4 } 

{ 1 ,3 }  { 1 ,4 } { 2,3 } { 2,4 } 
Figure 6 K2 ,4 is n ot 2 -monoph i l ic 

We will show that Kn,n• is not n-monophilic for n ::=:: 2. 
Assign mutually disjoint lists of n colors to the top row vertices v 1 , • • •  , vn . There 

are nn different ways to make a list of n colors by choosing one color from each of the 
n top row lists . Assign these nn lists to the bottom row vertices w 1 , • • •  , Wn• . 

For any assignment of colors to the n top vertices, there is a bottom vertex whose 
list consists of those n colors . So there will be a match between that bottom vertex 
and some top vertex. Thus the probability of getting a match with these color lists is 1 .  
On the other hand, if all the lists are identical, say { 1 ,  . . .  , n } ,  then the probability of 
getting a match is less than 1 :  assigning color 1 to the top vertices and color 2 to the 
bottom vertices gives a proper coloring. This shows that Kn,n• is not n-monophilic. 

Remark You may be wondering: nn is a very large number; aren't  there any smaller 
examples? Yes, there are; for n ::: 2 there is a non-n-monophilic graph with only 3n 
vertices . We don't  use this graph in our proof above because constructing it, as well as 
proving that it is not n-monophilic, is more elaborate and involved (for details, email 
rnaimi<Doxy . edu) . It would be interesting to try to find the minimum number of 
vertices of a graph that is not n -monophilic. 



VOL .  78, NO. 2 ,  APRI L 2 005 1 3 7 

Acknowledgment. We thank Tamas Lengyel (of Occidental College) and the referees for many helpful sug

gestions. Nairni expresses gratitude to Caltech for its hospitality while he worked there on this paper during a 

sabbatical leave. Pelayo wishes to thank the California Alliance for Minority Participation and the Undergraduate 

Research Center at Occidental College for supporting this work. Theorem 4 was obtained by Radoslav Kirov and 

Nairni as part of a summer undergraduate research program at Occidental College. 

REFERENCES 
1 .  Reinhard Diestel, Graph Theory, Springer, Graduate Texts i n  Mathematics 173 ( 1 997). 

2. Paul Erdos, Arthur L. Rubin, Herbert Taylor, Choosability in graphs, Congr. Numer. 26 ( 1980), 1 25-157 .  

3 .  Fred Galvin, The list chromatic index of a bipartite multigraph, J. of Combinatorial Theory, Series B 63 ( 1 995), 

1 53-158 .  

4. Doron Zeilberger, The method of  undetermined generalization and specialization, illustrated with Fred 

Galvin's amazing proof of the Dinitz Conjecture, Amer. Math. Monthly, 103 ( 1996), 233-239. 

Why E u c l idean Area Measure Fail s  
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One of the central and most interesting themes of noneuclidean (hyperbolic) geometry 
concerns the angle sum and area of polygons. A triangle-so we learn-has an angle 
sum of less than rr ,  a quadrilateral one of less than 2rr , and generally a n-gon one of 
less than n · rr - 21l' . More specifically, one can establish that the number n of vertices 
of a polygon does not determine its angle sum, which can be anything between 0 
and n · rr - 2rr . This prepares the way for the remarkable conclusion that the defect 
of a n-gon, the difference between its angle sum and n · rr - 21r , has all the desired 
properties of an area measure. 

But where does this leave conventional Euclidean area measure with the formula 
(base x altitude)/2 for triangles? Is the defect simply a convenient alternative for mea
suring area in noneuclidean geometry, or do we have to use it because the Euclidean 
area measure is not applicable? The second is true, and the reason is that an indispens
able but often neglected property of the formula for the area measure of a triangle in a 
Euclidean plane cannot be carried over to the noneuclidean plane. What we refer to is 
the well-definedness of Euclidean area measure, in particular the fact that in a triangle 
with sides a ,  b, c and related altitudes ha , hb , he ,  the area can be calculated as 

with the results in all three cases invariably being equal. 
For the investigation of the same formula on the noneuclidean side, we choose a 

path that contrasts the two theories clearly, and which can be taken before or after one 
discusses the defect. 

We first tum to a figure consisting of a triangle t::.OAB with a right angle at B, and 
points A' on ray oA such that a:f = 2 · oA, and B' on ray OR such that t::.OA' B' is a 
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triangle with right angle at B' ,  as in  FIGURE 1 .  In addition we define A" as the point 
----:--+ 

on ray B' A' that satisfies BA = B' A", and B" as the image of A" under the translation 
[A' --+ A ] = [A --+ 0] .  It follows that L,AA' A" = t::,.OAB" . (Note: Readers may be 
unfamiliar with translations along a line l in noneuclidean geometry; they can be easily 
explained in terms of reflections. To construct the translation [A --+ 0] ,  create line r 
perpendicular to oA through A and line s perpendicular to oA through the midpoint 
of OA; reflecting through r and then through s produces the desired translation. [3, 
p. 326] ) 

A '  

- - - - - - - - - A "  ... 

Figure 1 

Remembering that triangles have angle sums < n and quadrilaterals have angle 
sums < 2n , we recognize that in triangle MOB, LAOB + LOAB < n j2, and in 
quadrilateral BB' A" A, LBAA" = L B' A" A < 7r j2. Consequently, 

7r 
LAOB < - - LOAB < n - LOAB - LBAA" = LA'AA" = LAOB" , 

2 

which means that B" lies outside LAOB and A" A' = B" A > BA. As a result 

B'A' = B'A" + A" A' = BA + A" A' > 2 · BA. 

Expressed intuitively: A point that moves with a constant velocity along ray oA dis

tances itself at an accelerating rate from ray DB. 

v 

v 

w - u 
v 

Figure 2 

Consider now an acute-angled, isosceles triangle i:::,. UVW with apex U ,  having M 
as the midpoint of the base, and orthogonal projections M', V' of M, V on WU, as in 
FIGURE 2. The length of U M, the principal altitude of i:::,. UVW, will be denoted by hu 

and the lengths of UW, VW, W, and MM' by v,  u ,  hv, and hm respectively. Now, if 
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Euclidean area measure were well-defined in the noneuclidean plane we would have 

in t::,. UVW, 

and in /:::,. UMW, 

uhu vhv 
2 = 2 , 

(uj2)hu vhm 
2 = 2 , 

and so hv = 2hm . However, we should have h v  > 2hm , as we showed before in FIG
URE 1 , which means that at least one of the above two equations is false. Hence, 
Euclidean area measure is not applicable in noneuclidean geometry. 

How does one prove that (base x altitude)/2 is well-defined in Euclidean geometry, 
and what accounts for the difference in noneuclidean geometry? As is often the case 
in Euclidean geometry, one verifies the equation between two products of segments 
by transforming it into one between two quotients and then applies a proportionality 
theorem [3, § 20] . And that is exactly what does not work in noneuclidean geometry; 
in FIGURE 1 
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For a, b > 0, we know that the arithmetic mean A (a ,  b) = (a + b)/2 produces the 
midpoint of the segment [a , b] on the real line. But what if we interpret a and b as 
slopes? A more natural mean in this context could be the "intermediate" slope, specif
ically, the positive slope S(a ,  b) of the line y = S(a ,  b)x that bisects the angle formed 
by the lines y = ax and y = bx . As a ,  b > 0 vary in the figure, one senses that S (a ,  b) 
is different from A (a ,  b) , but nonetheless has characteristics often associated with a 
mean. 
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x = O x = I  

y = bx 

y = S(a ,  b) 

0 y = O  

Originally we chanced upon this mean while statistically comparing various linear 
regression methods [9] . We randomly perturbed a set of points on a line of slope m ,  
repeating many times . For a particular method, we computed an average slope m to 
compare with the underlying slope m .  Once in a while a random sample of perturbed 
points produced a near vertical regression line; this was a problem: since we used the 
arithmetic mean to compute m ,  the corresponding near-infinite slope would not be 
canceled by the near-zero slope of a near horizontal line. We felt that it would be more 
meaningful to compute m by identifying slopes to angles, which led us to consider the 
mean 

S(x 1 , x2 , . . .  , Xn ) = tan ( Ctan- 1 x1 + tan- 1 x2 + · · · + tan- 1 Xn ) fn ) . ( 1 )  

Before proceeding, we  must carefully consider what we  mean by mean. Typically 
a mean M is a function from (0, oo) x (0, oo) x · · · x (0, oo) to (0, oo) satisfying 
min{x1 , x2 , . . .  , xn } ::::; M(x1 , x2 , . . .  , xn ) ::::; max{x1 , x2 , . . .  , xn } (intermediacy) and 
with an output value independent of the arrangement of input values (symmetry) .  

The classic means-the arithmetic , geometric, and harmonic-are defined respec
tively by 

A (x , , X2 , . . .  , Xn ) = (x, + Xz + · · · + Xn ) fn ,  
G (x, , X2 , . . .  , Xn ) = .ylx,xz · · · Xn , 
H (x , , Xz , . . .  , Xn ) = nj ( l jx , + l fxz + · · · + l fxn ) .  

It i s  easy to see that these, as well as ( 1 ) ,  are means as defined above. Many other means 
and families of means can be found in the vast literature on means [1, 3, 6, 7, 10] . 

Depending on focus and context, there is some variation in definition of mean. For 
example, sometimes continuity is assumed and other times symmetry is not required. 
We contend that often the definition is restricted to positive numbers for convenience 
and out of geometric tradition [ 4] . This requirement avoids problems in, for example, 
G and H, but is arguably unnaturally restrictive for A . 

Define D =  { (x 1 , x2 , . . .  , Xn ) :  x 1 , x2 , . . .  , Xn > 0 or x , , x2 , . . .  , Xn < 0}, and, for 
the purposes of this note, define a mean to be a function M : D � lR satisfying inter
mediacy and symmetry and 

M(x, , xz , . . .  , Xn ) = -M(-x, , -xz , . . .  , -xn ) for XJ , X2 , . . .  , Xn < 0. (2) 

If necessary, we extend a mean on (0, oo) x (0, oo) x · · · x (0, oo) to D by requir
ing (2) . 
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Returning to the definition of S given by ( 1 ) , we see that S (x1 , x2) returns the slope 
of the line that bisects the angle formed by lines with slopes x1 and x2 • Because of this 
interpretation, we call S the slope mean, though the "slope to arc back to slope mean" 
would be a more apt description. In the literature, a special focus has been placed on 
homogeneous means. Although the slope mean is not homogeneous, we will see how 
it is closely related to the three classic means. 

The notion of invariance Much attention is given to means M that are homoge
neous, meaning that M(�x1 , • • . , �xn ) = �M(x1 . . . .  , Xn) ,  for � > 0. We generalize 
this notion, and say that a mean M on D is invariant under a real valued function f if 
M(f(xJ ) ,  f (xz ) ,  . . .  , f (xn) )  = f (M(xJ , Xz , . . .  , Xn ) )  for all (xJ , Xz , . . .  , Xn ) E D  for 
which both sides of the equality are defined. Thus, we will also call a homogeneous 
mean scalar invariant, due to the fact that it is invariant under J,; (x) = � x for all 
� i= 0. 

It is straightforward to verify that the arithmetic mean is scalar invariant and invari
ant under translation given by 8r (x) = x - r, r E R. Moving on, it is also easily seen 
that the geometric mean is also scalar invariant. Moreover, it is invariant under recip
rocation r (x) = 1 1x .  Other well-known means (see Eves' list [4, p. 200]) do not have 
this invariance, but the slope mean shares such a property with the geometric mean, as 
we will now show: 

Fix X1 , Xz , . . .  , Xn > 0 and choose lh , {}z , . . .  , ()n E (0 , 1T 12) such that tan (); = X; for 
all i = 1 ,  2, . . .  , n . Then tan - J ( 1  I x; ) = TC 12 - (); for each i ,  which, together with the 
relations between tan x and cot x ,  leads to 

S (r (xJ ) ,  . . .  , r (xn ) )  = tan ({ tan- 1 ( l lxJ ) + · · · + tan- 1 ( l lxn ) ) ln) 
� cot ( (t, tan- 1 x,) In) � r (S(x 1 ,  x2 , • • •  , x. ) ) . 

We leave to the reader to check that the harmonic mean is scalar invariant but the 
slope mean is not. The relation between the arithmetic and harmonic means 

(3) 

will be used in the remainder of the note. 

Comparison with the classic means The three classic means given in the introduc
tion can be compared by the most frequently proven inequalities of classical analy
sis [2, 5] : 

H(xJ , Xz , . . .  , Xn ) � G(xJ , Xz , . . .  , Xn ) � A (xJ . Xz , . . .  , Xn ) for all X; > 0. (4) 

The second inequality in (4) is the celebrated Geometric-Arithmetic Mean Inequality. 
The slope mean, like the geometric mean, is also trapped between A and H. 

THEOREM 1 .  For all X1 , Xz , · · · , Xn > 0, we have 

Proof The second inequality follows from the fact that f (x)  = tan- 1 x is concave 
down for x > 0. The first inequality follows from the invariance of S under r (x) = 1 I x 
and (3) . • 
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The slope mean S i s  not scalar invariant, which in  tum implies that a nontrivial 
family of means S� can be introduced by 

The following result will further extend the assertion in Theorem 1 and connect the 
slope mean to the arithmetic and harmonic means. 

THEOREM 2. Let S� be defined by (5) . Then, for all XJ ,  Xz , · · · , Xn > 0, 
(a) H(XJ , Xz , . . .  , Xn ) _:::: S� (XJ ,  Xz , . . .  , Xn ) _:::: A (x" Xz , . . .  , Xn ) for all � > 0. 
(b) lim��o+ S� = A and lim��oo S� = H. 

Proof. Part (a) follows from Theorem 1 and the fact that A and H are scalar invari-
ant. Part (b) is easily verified by L'Hospital 's rule. • 

Throughout the rest of the note we will concentrate on means with n = 2. Let 
a , b > 0, thinking of a and b as slopes. In this case, ( 1 ) simplifies to give the mean 
m = S(a , b) of a and b as m = tan( (tan- 1 a +  tan- 1 b)/2) . Therefore, m satisfies 
tan(2 tan- 1 m) = tan(tan- 1 a + tan- 1 b) . Applying the angle sum identity for tangent 
we end up with a quadratic equation in m whose positive root can be expressed as 

m = S(a , b) = (ab - 1 + J(a2 + 1 ) (b2 + 1 ) ) j (a + b) , (6) 

under the assumption that ab 'I= 1 . If ab = 1 ,  then (6) yields S(a , b) = S(a , 1 /a) = 1 ,  
which i s  consistent with ( 1 ) and the geometric interpretation of S. Therefore, for all 
a , b > 0 (and in fact for all (a , b) E D) the formula (6) provides the slope of the line 
that bisects the angle formed by two lines of slopes a and b. 

Characterization by invariance The classic means A, G, and H are scalar invari
ant. Mathematically, it is interesting to determine the class of functions under which 
a given mean is invariant; we will also see that a mean is uniquely determined by 
the class of functions under which it is invariant. We will study characterizations by 
invariance for arithmetic, geometric, harmonic, and slope means. 

As pointed out earlier, A is invariant under all the functions 

f� (x) = �x , � i= O  and g, (x) =x - T, -r E R. (7) 

More importantly, A is determined uniquely by these two sets of invariances as fol
lows. 

We assume that M is any mean on D invariant under the functions given by (7) . 
Fix (a , b) E D, and let m = M(a , b) . Using symmetry and scalar invariance, we have 
m = M(b, a) = -M(-b, -a) . On the other hand, the translation invariance gives 
M(-b, -a) = M(a - (a + b) ,  b - (a + b)) = M(a , b) - (a + b) = m - (a + b) . 
Therefore 2m = a +  b or M(a , b) = A(a , b) . Thus, the arithmetic mean is the only 
mean invariant under scaling and translation. 

Next, we tum our attention to the geometric mean G. It turns out that the invariances 
under f� (x) = �x . � 'I= 0 and r (x) = 1 /x are enough to determine G .  We encourage 
the reader to prove this result by adapting the argument for the arithmetic mean, or 
otherwise. 

Moving on, it is not hard to verify that H is invariant under f� (x) = � x, � 'I= 0 and 
g, (x) = xj ( l  - a) , T E R (We used the relation (3) to find the second invariance 
family.) The proof of Theorem 3 below suggests a method to show that these two 
families of invariances in fact determine H .  
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To finish, we now turn our attention to the slope mean. Since we have already shown 
that S is invariant under r (x) = 1 I x, we know that S cannot be invariant under scaling, 
otherwise S = G. Is there a second invariance that determines S? 

Now is a good time to think geometrically. Let a , b > 0 and consider the three lines 
through the origin and containing the points A ( l ,  a) , B( 1 ,  b) , and C ( l ,  S(a , b)) .  It is 
easily seen that 1 1a , 1 1b and 1 1 S(a , b), respectively, are the slopes of the same lines, 
but taken with respect to the y-axis. The geometric meaning of the slope mean indi
cates S( l la , 1 1b) is also the slope of the line containing C with respect to the y-axis .  
Hence, invariance under r , S ( l la , l ib) = 11 S(a , b) , is now geometrically obvious. 

Continuing to think this way, we find another natural invariance for S: rotation by a 
fixed angle. After a little work, we have that S is invariant under 

fp (x) = (x + p)l ( l - px) ,  p E � and r (x) = 1 1x . 
Moreover, S is determined by these two invariances. 

(8) 

THEOREM 3. If a mean M : D � � is invariant under all the functions in (8), 
then M = S on D. 

Proof Assume M : D � � is invariant under the functions in (8). Fix a, b > 0 and 
let m = M(a , b) .  The key observation is that the system of equations /p (a) = r (b) and 
/p (b) = r (a) admits a solution, namely p = ( 1 - ab) l (a + b) . Using symmetry and 
the invariances r and fP (where p = ( 1 - ab)l (a + b)), we have 

1 1 1 m = M(a , b) = M(b, a) = = = -- ,  M(11b , 1 1a) M(fp (a) , /p (b) ) fp (m) 
where the last equality is valid provided that fp (m) is defined. But if m = 1 1 p, then 
the intermediacy of m = M(a , b) leads either to b2 ::: - 1 (when a < b) or a2 ::: - 1 ,  
both of which are impossible. 

Thus, m = 1 I fP (m) or m = -p ± J p2 + 1 .  Applying intermediacy one more time 
and substituting for p yields 

ab - 1 + J(ab - 1 )2 + (a +  b)Z m - ------�----�---------- a + b · 

Thus, m = S(a , b) given by (6) . • 

Note that the technique employed in Theorem 3 can also be used to prove those 
previously mentioned characteristic results through invariance for arithmetic, geomet
ric, and harmonic means. Also note that the families of invariances are algebraic sub
groups under composition of the group of fractional linear transformations (provided 
functions are considered equal if they differ at a finite number of points) .  

Further notes We have focused on quasi-arithmetic means, means of the form 
f- 1 ( (f(x , ) + f(xz) + · · · + f(xn ) ) ln ) . Whenever f is a monotone function defined 
on (0, oo), this generates a mean. In particular, taking f(x) to be x, ln x , l lx , and 
tan- ' x generates A, G, H, and S, respectively. It should be noted that some of the 
general theory of quasi-arithmetic means, developed in Hardy, Littlewood, and P6lya's  
Inequalities [5] , can be applied to obtain and extend the comparison results above. 

Besides the quasi-arithmetic means, there are other families of means containing the 
slope mean. A beautifully simple class of means, going back to 1 933 [8] , is generated 
by any function f : (0, oo) � (0, oo) as (f(a)b + f(b)a)l (f(a) + f(b)) . Taking 
f (x) to be 1 ,  Jx, and x generates A, G, and H, respectively. Here the slope mean 
is generated by f (x) = J x2 + 1 . More recently, Dietel and Gordon [3] generated 
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means from functions f : (0, oo) --+- (0, oo) and their tangent lines, which i s  a special 
case of the means in Horwitz [6] . Under the assumption that f" (x) is nonzero and 
continuous, a mean is given by the x-coordinate of the intersection of the tangent 
lines to y =  f (x)  at x = a  and x = b. In this case, taking f (x )  to be x2 , Jx, and 
l jx generates A, G, and H, respectively. The slope mean also belongs to this family, 
generated by f (x) = Jx2 + 1 . 

Some families of means do not contain the slope mean because the means are ho
mogeneous, and yet there are still other families [10] where it is not clear whether or 
not the slope mean is a member. 

In their study of the three classic means, Bullen, Mitrinovic, and Vasic im
plicitly characterized these means through a family of functions as follows .  Let 
{fA (x) : A E lR} be a family of functions indexed by A such 'that fA_ , (x) = fA (x) 
and suppose that for every pair (a , b) E (0, oo) x (0, oo),  there exists a unique index 
A =  A (a ,  b) such that JA (a) = b. Then m = M(a ,  b) can be defined by JA (m) = m .  It 
can be seen that our characterization of means by two sets of functions leads to such a 
characterization using a single family of functions. 
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A Carpenter's Ru l e  of Th u m b  

R O B E R T F A K L E R  
U n iversity of Michigan-Dearborn 
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rfakler@ umd. u m i ch .edu 

In an episode of the PBS television series "The New Yankee Workshop," host and 
master carpenter Norm Abram needed to construct a rectangular wooden frame as part 
of a piece of furniture he was building. After gluing and clamping four pieces of wood 
together to form a rectangle, he checked the rectangle for squareness by measuring the 
two diagonals to determine whether or not they were of equal length. Upon finding 
a small difference in the two measurements, he announced that he would "split the 
difference." He proceeded to carefully nudge the top comer of the frame at the end of 
the longer diagonal until his measuring tape indicated that its length was the average of 
his two original diagonal measurements. He then said he was satisfied that the frame 
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was square. After hearing this , I wondered if the frame was indeed square, that ·is, 
whether there was a right angle at each of the four corners of the frame. 

To answer the above question, we need to solve the following problem: Suppose we 
have a parallelogram with sides of lengths a and b .  Let x and y be the lengths of the two 
diagonals .  If we square up this parallelogram by transforming it into a rectangle with 
side lengths a and b, what is the common length d for the two diagonals? FIGURE 1 
shows our parallelogram and its squared up version. 

a a 

Figure 1 A wooden frame before and after stra ighte n i n g  

From the Law of Cosines, we see that 

x2 = a2 + b2 - 2ab cos () and y2 = a2 + b2 - 2ab cos (rr - 0 ) .  
Therefore 

Thus 

d = J(x2 + y2) /2. 

b 

This is evidently not the same as the average of the two original diagonal measure
ments, (x + y)/2, the length that Abram recommended for the new diagonal. His al
gorithm does not exactly produce the length needed to turn the parallelogram into a 
rectangle, but we will see that it is a good approximation. 

What is the mathematical basis for this approximation? Consider the function 
d (x ,  y) = .j(x2 + y2)/2, where x > 0 and y > 0. Suppose L (x ,  y) is the lineariza
tion of d at the point (x0 , x0) ,  where x0 > 0 is the correct measurement of the diagonal. 
(Note that d (x0 , xo) = x0 . ) Then 

L (x ,  y) = d(xo , xo) + dx (xo , Yo) (x - xo) + dy (Xo , xo) (y - xo) .  

Since dx (x , y )  = xjJ2x2 + 2y2 and dy (x , y) = yjJ2x2 + 2y2 , we have dx (x0 , x0) = 

dy (xo , xo) = 1 /2. Also, d (xo , xo) = xo . Therefore 

L (x , y) = xo + (x - xo) /2 + (y - x0) /2 = (x + y)/2. 

In the "The New Yankee Workshop" episode, Abram took the diagonal measure
ments x and y of the wooden frame. Instead of the exact diagonal length d (x , y) that 
would square up the frame, which is difficult to compute mentally, he used the lin
ear approximation L (x , y) ,  which is easy to calculate. In practice, the frame would be 
squared up by eye before its diagonals were measured so that x and y would be nearly 
equal and nearly equal to the exact diagonal x0 • In this case, the linearization L (x ,  y) 
is a quite good approximation for d (x ,  y) , as the following example shows. 
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Example Suppose our diagonal measurements are x = 36 inches and y = 37 inches. 
Then d(36, 37) = .j(362 + 372)/2 = 36.503424 and L (36, 37) = 36.5 . 

The reader may wish to estimate the error in this linear approximation using Tay
lor's theorem in two variables [1] . If y is the longer diagonal and x the shorter, and if 
both l x - x0 1 and I Y - x0 1 are known to be less than h , the error can be seen to be less 
than y2h2/ (2x3) .  
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Chess : A Cover- U p  
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Computer Science Department 
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The game of chess has always proved a rich source of interesting combinatorial prob
lems to challenge mathematicians, logicians, and computer scientists . Apart from play
ing strategies and end-games, many chess-based problems have been posed over the 
centuries that tax the limits of symbolic reasoning, such as the n-queens and re-entrant 
knight's tour problems. However, the modern computer has enabled new approaches 
to these types of problems, and some of these questions have been explored (and even 
decided) in ways not previously possible. 

One such problem has been attributed to Joseph Kling [8] , a music producer who 
operated a chess-oriented coffee house in London from 1 852. Kling, who migrated to 
England from Germany, is described as "a pioneer of the modern style of chess" [5] ; 
he published several studies on the game including the popular but short-lived journal 
Chess Player, co-edited with the chess professional Bernhard Horwitz. Kling posed 
the following question: using a player's eight major chess pieces and no pawns, can 
all squares on the chessboard be covered (attacked)? At first glance the problem looks 
easy-the eight pieces collectively have more than enough attack power. Determining 
whether there is a solution, however, is nontrivial. No simple logical argument has yet 
been discovered. 

Because a chessboard is small, the combinatorial size of chess problems is theoreti
cally tractable. However, only the recent advances in computing power have made this 
true in practice. In 1 989, Robison, Hafner, and Skiena [8] applied an exhaustive search 
to prove that no solutions exist to the Kling cover problem. To accomplish this using 
the computing power available at the time, they developed a novel technique for reduc
ing, or "pruning," the number of solutions that need to be searched. Their approach, 
although not immediately intuitive, reduced the search space by more than 99.9% . 

With the computing power available today, problems such as this can now be ex
haustively searched in a reasonable time with no need for creative pruning of the search 
space. However, there will always be larger problems pushing the limits of computing 
power, and methods for reducing the search space help put more of these within reach. 
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To illustrate the application of computing techniques to perform exhaustive search, 
we revisit the Kling cover problem in depth. We first attempt to formalize it and present 
a clear definition of the scope of the problem. We then apply a standard computing 
algorithm to organize the search space, and present an analysis of three alternative 
pruning techniques. These techniques, although much less complex computationally 
and conceptually, give comparable reductions in the size of the search space. In our 
conclusions we discuss the limitations of exhaustive search techniques in the context 
of traditional proofs, and the role these methods may play in the future of scientific 
progress. 

Bounding the search space In order to enumerate all the possible ways that the 
eight pieces may be positioned on the chessboard, we must first select an ordering of 
the pieces, that is, which piece to place first, second, and so on. Although all orderings 
produce equivalent sets of final chessboard configurations, certain orderings will prove 
to allow better optimization of the solution search. We use three different orderings that 
facilitate our pruning methods : 

where q is the position of the queen, r1 and r2 the position of the rooks, hw the position 
of the bishop on a white square, bb the position of the bishop on a black square, h 1 and 
h2 the position of the knights, and k the position of the king. We indicate the position 
of a piece on the chessboard using a number from 1 to 64 that corresponds to the 
occupied square, as shown in FIGURE 1 .  

Figure 1 N u m bered chessboard 

We simplify the implementation by initially removing the restriction that pieces 
occupy distinct squares, allowing what we refer to as superpositioning. We define a 
configuration vector c as a vector that holds the numbers indicating the positions of 
each of the eight pieces relative to a given ordering, which we call a configuration. We 
call the set of all possible configuration vectors for a given ordering the search space. 
Clearly, the size of the search space is independent of the ordering used. 

Let us first bound the size of the search space by determining the number of pos
sible configuration vectors . Since there are 64 possible positions for each of the eight 
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pieces (a naive upper bound that allows for superpositioning), the total number of 
configuration vectors is bounded by 648 = 248 • Kling's problem restricts one bishop 
to the 32 black squares and the other bishop to the 32 white squares (following the 
rules of chess), dropping the bound on the number of configurations to 32 x 32 x 646 . 
(FIGURE 2 shows a solution to Kling's problem if both bishops can be on the same 
color. ) 

Figure 2 A sol ution with both b i shops on the same color 

We can further reduce the bound on the number of configurations by noting that due 
to the symmetry of the board, some configurations are equivalent. Two configurations 
<\ and c2 are equivalent if one or more of the following three transformations takes c2 
to c1 : 

1 .  Interchanging the position of r1 and r2 or h 1 and h2 in c2 
2. Rotating the position of all the pieces in c2 through angles of 90° , 1 80° , or 270° 

about the center of the board 
3 . Reflecting the position of all the pieces in c2 about one of the diagonal axes 

Equivalent configurations attack the same number of squares, so it is only necessary 
to include one configuration in a set of equivalent configurations in the search space. 
By restricting the positions of certain pieces, we can prevent equivalent configurations 
from appearing in our search space. 

First, we eliminate configurations equivalent due to interchanging rooks and knights 
by limiting the position of the second rook and second knight: we require that r1 � r2 
and h 1 � h2 . This produces 

distinct positions for each of the two pairs of interchangeable pieces and reduces the 
upper bound on the number of configurations in the search space to 

32 X 32 X (65 X 32) X (65 X 32) X 642 . 
Second, we eliminate configurations equivalent due to rotation. Each configura

tion has three equivalent forms (90° , 1 80° , and 270° rotations) .  We divide the board 
into four quadrants and limit the position of one of the pieces-in our experiments, 
the queen-to the lower-left quadrant. This restriction on the queen eliminates all 
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rotationally equivalent configurations and reduces the upper bound on the number of 
configurations by a factor of four to 32 x 32 x (65 x 32) x (65 x 32) x 1 6  x 64. 

Third, we eliminate the configurations equivalent due to reflections. Observe: lim
iting the queen to the lower-left quadrant (as described above) also eliminated the 
diagonal symmetry along the upper-left to lower-right axis. We then limit the white 
bishop to the 16 white squares underneath the lower-left to upper-right diagonal to 
eliminate the diagonal symmetry along the lower-left to upper-right axis and reduce 
the upper bound on the number of configurations by a factor of two to 

16  X 32 X (65 X 32) X (65 X 32) X 16  X 64 = 229 X 652 = 2, 268 , 279, 603 , 200 ( 1 )  

or about 2.27 trillion possible configurations i n  the search space. 
Assuming 8 CPU cycles to check a configuration, a computer from the late 1980s 

running at 25 MHz would take on the order of one week to exhaustively search each 
of these configurations. Today, a computer running at 2 GHz could finish in less than 
three hours. If a pruning technique is employed that achieves a 99.9% prune rate, the 
running time can be reduced to less than 10  seconds. 

Backtracking The search space can be organized as a tree with eight levels . We 
place the i th piece (relative to an ordering OJ . 02 , or 03) on the i th level of the tree. 
The i th level contains nodes representing the positions that the i th piece can occupy 
on the chessboard. Each node is the parent of a sub-tree containing descendant nodes 
representing all the possible positions of the remaining unplaced pieces .  A leaf node 
occupies the last level (level eight) in the tree. A leaf node represents a configuration 
where all pieces have been placed. FIGURE 3 illustrates the tree organization relative 
to 01 . 

Figure 3 The fi rst five leve l s  of the tree orga n i zation  for the search space. To s i m p l ify 
the i l l ustration,  p ieces are a l l owed to occupy any of the 64 squares. 

Let c[i ] be a partial configuration vector, by which we mean a placement of the first 
i pieces according to one of the orderings OJ .  02 , or 03. In the tree search space, a 
partial configuration is represented as an internal node, by which we mean any nonleaf 
node. The level of an internal node corresponds to the index i in its partial configura
tion vector c[i ] .  Note that c[8] , which is c, can be interpreted as a path from the root 
to a leaf on the tree (relative to 01 , 02, or 03) . 

An algorithm commonly applied to a tree search space is recursive backtracking 
(also called depth-first traversal). Depth-first traversal means that we probe the children 
of a node x before we probe x ' s  siblings. When we can probe no other child of a node, 
we backtrack and try the next child of its parent node, that is, its nearest sibling. 

Backtracking itself is simply an ordered traversal of the search space, allowing for 
an exhaustive search of all nodes in the tree. However, by organizing the tree intelli
gently, it is possible to develop criteria for skipping the evaluation of a node's descen
dants. We refer to these as prune rules. If a prune rule for a node n determines that no 
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child of n can possibly be  a solution, then node n i s  pruned and none of  its descendants 
are visited. Effective prune rules can yield dramatic reductions in the number of nodes 
that need to be traversed. 

Strong vs. weak solutions We define ap [s ] , the attack pattern of a piece p relative 
to position s to be the set of squares attacked, or "covered," when chess piece p is at 
position s E { 1  . . .  64} ,  without regard to other pieces that may be on the board. FIG
URE 4 shows an example of the attack pattern for each piece (relative to position 28). 
Observe that neither a king nor a knight's attack set is affected by intervening pieces . 
In contrast, the queen, bishop, and rook's attack patterns may be affected by an inter
vening piece, that is, a part of the attack pattern may be blocked. FIGURE 5 shows an 
example of a knight blocking a bishop's attack to square 1 5  and square 8 .  

a R [2 8] (Rook) ao [28] (Queen) aB [2 8] ( B i shop) 

aH [2 8] (Kn ight) a K [2 8] (K i ng) 

Figure 4 Attack patterns for each p iece relative to pos it ion 2 8  

Figure 5 A kn ight b locki ng a b ishop's attack on squares 1 5  and 8 
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Following Robison et al . [8] , we say that configuration c strongly covers square s 
if and only if there is at least one piece in c whose attack pattern covers square s 
and whose attack pattern for square s is not blocked by any other piece. We say that 
configuration c weakly covers square s if and only if there is at least one piece in c 
whose attack pattern covers square s regardless of blocking. 

A configuration c is a strong (weak) solution to the Kling problem if and only if 
( 1 )  each of the 64 squares (including the eight squares occupied by the eight pieces) 
is strongly (weakly) covered, and (2) each piece is on a distinct square (no superposi
tioning). 

A strong solution will also necessarily be a weak solution. It is much easier compu
tationally to check for weak solutions then strong solutions, since blocking effects can 
be ignored. Thus, to search for strong solutions, it suffices to first compute the set of 
weak solutions, and then examine this much smaller set for strong solutions .  

Three prune rules Let l c [i ] l  denote the cardinality of the set of chessboard squares 
weakly covered by the partial configuration c(i ] .  Let l c [i ] l b ( l c [i l l w ) denote the cardi
nality of the set of black (white) chessboard squares weakly covered by c [i ] . Clearly, 
l c [i ] l  is a nondecreasing function of i ,  and 

PRUNE RULE 1 .  Order the pieces relative to 01 • Define mwa[j ] to be the maxi
mum possible attack potential of the jth piece placed anywhere on the board. TABLE 1 
gives these values for each piece. At node c1 [i ] ,  let 

8 

r [i ] = L mwa[j ] . 
j=i+l  

Prune rule 1 is : if 

then prune the node. (That is, the node should be pruned if, at the i th level, the weakly 
attacked squares and the squares that the remaining pieces can attack cannot cover the 
board.) 

TAB L E  1 :  Max i m u m  weak attack mwa potentia l  per level j for 
p ieces ordered as i n  01 

Piece j mwa [j ]  

Queen 1 27 
Rook 2 1 4  
Rook 3 14  
Bishop 4 1 3  
Bishop 5 1 3  
Knight 6 8 
Knight 7 8 
King 8 8 
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PRUNE RULE 2 .  Order the pieces relative to 02 , (the last three pieces being white 
bishop bw at level 6, the black bishop bb at level 7, and the king at level 8) . Let mbtack [ i ]  
be the maximum number of black squares that can be attacked by the unplaced pieces 
after level i .  Let mwhireU ]  be the maximum number of white squares that can be at
tacked by the unplaced pieces after level i (see Table 2). Prune rule 2 is: if 

then prune the node. (That is, the node should be pruned if, at the i th level, the black 
(white) squares weakly attacked plus the largest possible number of black (white) 
squares that the remaining pieces can attack is less than 32.) 

TAB L E  2:  Max i m u m  b l ack and white attack potentia l  after pos i 
t io n i ng level i .  Note the  asymmetry. 

Attack Potential 
Level i mblack [i ] mwhite [ i ] 

1 49 49 
2 4 1  4 1  
3 33  33 
4 25 25 

5 1 7  1 7  
6 1 7  4 
7 4 4 
8 0 0 

PRUNE RULE 3 .  Order the pieces relative to 03 (the king at level 6 and the rooks 
at levels 7 and 8). Let mrowsU]  be the number of rows in c3 [ i ]  containing three or more 
nonattacked squares (counting rows with three or more nonattacked squares ensures 
that the nonattacked squares are in more than two different columns). Since each rook 
can attack only one row, prune rule 3 is : if 

then prune the node. 

mrows [6] > 2 or mrows [7] > 1 

Results We measured the effectiveness of our prune rules by running backtracking 
to traverse the entire search space four times: once with no prune rules, once with only 
prune rule 1 ,  once with only prune rule 2, and once with only prune rule 3. All four 
times we found 8 1 3  weak solutions to the chess cover problem. It is easy to determine 
if any of the 8 1 3  weak solutions are strong solutions. In fact, none were, confirming 
that there are no strong solutions to the Kling Chess problem. 

One interesting trend to observe is the position taken by the queen. Of the 8 1 3  
weak solutions the queen occupies one of the four central squares 1 9 ,  20, 27, 2 8  (see 
FIGURE 1 )  in 7 1%  of the cases. This central location maximizes the initial attack 
potential of the queen, and the trend appears to be even stronger when superpositioning 
is allowed. There are 8,7 1 5  weak solutions allowing for superpositioning, with the 
queen occupying one of the four central squares in 87% of the cases . 

Of the 8,7 1 5  weak superposition solutions, 1 ,984 used only seven of the eight 
pieces. In each of these 1 ,984 cases, one knight was superimposed on the queen and the 
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Figure 6 A weak superposit ion sol ut ion us ing  o n l y  seven p ieces. Notice the q ueen and 
a kn ight both occupy square 2 7 .  

second knight was not necessary. FIGURE 6 shows an example of a weak seven-piece 
superposition solution. 

When we checked the 8,7 15  weak solutions in which superpositioning is allowed, 
350 strong solutions were found. Of these 350 strong superposition solutions, the 
queen occupies one of the four central squares 19 , 20, 27, 28 (see FIGURE 1) 97% 
of the time. In addition, each rook belongs to the outer perimeter (the set of squares 
that border the edge of the chessboard) 97% of the time. FIGURE 7 shows an example 
of a strong superposition solution with the queen on square 28 and the rooks on the 
outer perimeter. 

Figure 7 A strong sol ution a l lowing  superposition i ng. Notice the queen and the kn ight 
both occupy square 2 8 .  

Upon examining the weak solutions, we discovered that the knights sometimes 
block more of the covered squares than they themselves attack (that is, the addition 
of a knight reduced the total number of squares strongly covered). This phenomenon 
occurred in 35% of the 8 1 3  weak solutions. The effective attack potential of the knights 
is much less than first appears and may offer the key to a traditional proof. 

Effectiveness of the prune rules Equation ( 1 )  gives about 2.27 trillion complete 
configurations in the search space that we must explore. These correspond to leaf nodes 
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in the tree search space. We measure the effectiveness of a prune rule by determining 
how many of these complete configurations (leaf nodes) the prune rule removes from 
the search space. Recall that when a node is pruned, all of its children are pruned from 
the tree. Since each node is a progenitor to some number of leaf nodes (and internal 
nodes), pruning the node removes these leaf nodes (and internal nodes) from the search 
space. 

Table 3 shows the results of using each of our prune rules on the Kling Chess Prob
lem. For each prune rule we list the prune results for the three levels 5, 6, and 7. No 
prunes were recorded for the previous levels. For each level we record the number 
of prunes and the number of leaf nodes removed from the search space as a result of 
these prunes. The final column shows the number of leaf nodes removed as a percent
age of the total number of leaf nodes in the search space (calculated from ( 1 )  ). The last 
row under each prune rule shows the total results for all prunes .  

TAB L E  3: Resu l ts of the prune ru les 

Tree % of Total 
Level Prunes Leaf Nodes Pruned Leaf Nodes 

Prune Rule 1 

5 500,796 66,665 ,963 ,520 2.94 

6 565 ,321 ,622 1 ,2 1 1 ,853 ,924,352 53 .43 

7 1 5 ,346,724, 150 982, 1 90,345 ,600 43 .3 

Total 1 5 ,9 1 2,546,568 2,260,7 10,233 ,472 99.67 

Prune Rule 2 

5 2,55 1 ,0 1 7  83,59 1 ,725,056 3 .69 

6 979,235 ,545 2,005 ,4 7 4,396 , 160 88.41 

7 2,757,235 , 103 1 76,463 ,046,592 7.78 

Total 3 ,739,02 1 ,665 2,265 ,529, 1 67,808 99.89 

Prune Rule 3 

5 0 0 0 

6 1 ,069, 1 1 5 , 1 00 2,223,759,408 ,000 98 .04 

7 706, 1 98,686 24,748 ,3 1 0,328 1 .09 

Total 1 ,775,3 1 3,786 2,248,507,7 1 8,328 99. 1 3  

In  all three cases our prune rules were most effective at level 6. At this level, prune 
rule 1 removed 53% of the leaf nodes, prune rule 2 removed 88% of the leaf nodes, 
and prune rule 3 removed 98% of the leaf nodes. Although each of the three prune 
rules removed very close to the same number of total leaf nodes (99% ), they had very 
different numbers for total prunings. Prune rule I had I5 .9 billion prunes, prune rule 2 
had 3 .7 billion prunes, and prune rule 3 had just 1 .7 billion prunes. 

The reason prune rule 3 could remove the same number of leaf nodes with much 
fewer prunes is because it was more effective at level 6, and could therefore remove 
more leaf nodes with fewer prunes than the other prune rules that had prunes at level 7 .  
The higher a node is on the tree, the more leaf nodes it has as children. Prunes that 
occur at a higher level remove a larger number of leaf nodes than prunes at lower 
levels. For instance, prune rule I had 565 million prunes at level 6 and 1 5 .3 billion 
prunes at level 7, yet the prunes at level 6 removed 19% more leaf nodes than the 
prunes at level 7. Prune rule 2 had 1 ,000 times more prunes at level 7 than at level 5 ,  
but these prunes amounted to just 2 times the number of leaf nodes removed. We were 
unable to devise a computationally feasible prune rule that could prune a node higher 
up in the tree than level 5 .  
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A greedy solution The odds of randomly picking a weak solution are 8 1 3 in 
2,268,279,603,200 or about 1 in 2.79 billion. One might wonder if a simple algorith
mic design paradigm such as greedy, which is designed to maximize some parameter 
at each step in the algorithm, can stumble upon a weak solution. The answer is yes : 

Take pieces in the order of configuration 03 and greedily place each piece on a square that maximizes the number of weakly covered squares (break ties by 
choosing squares closest to the center). 

This greedy formulation produces the weak solution of FIGURE 8. Notice that the 
queen lies in the four central squares 1 9, 20, 27, 28 (see FIGURE 1 )  and the rooks lie 
on the perimeter. 

Figure 8 The weak sol ut ion fou n d  us ing  the greedy a lgorith m 

Implementation Even with the massive amount of pruning we achieved, it was crit
ical to have an optimized implementation to keep the runtime of the program rea
sonable. In our implementation, the data representation of a board b[i ] , 1 .:::: i .:::: 64, 
corresponding to the attack pattern a P [ s ] (piece p on square s ) is an array of Boo leans 
that represents the state of the squares on a chessboard numbered from 1 to 64 as in 
FIGURE 1 .  The Boolean b[i ] is true (one) if square i is attacked by piece p on square s ;  
b[i ] i s  false (zero) if square i i s  not attacked by piece p on square s .  We implement a 
board as eight contiguous bytes where each Boolean value is represented by one bit. 
To optimize the search space computation, we initially generate and store as boards 
the attack patterns for each of the pieces at every possible position. 

Given a configuration e we define its cover pattern, as the union of the attack pat
terns in its configuration. The cover pattern is the result of logically OR-ing the appro
priate boards representing these attack patterns. FIGURE 9 illustrates a cover pattern 
for the partial configuration with aK ( 1 8] , a8 [ 1 6] , and aR [64] . The chessboard in the 
figure shows graphically the squares that are attacked by this partial configuration. 
Next to this is the corresponding cover pattern shown numerically, where each 1 rep
resents an attacked square and each 0 represents a nonattacked square. A configuration 
is a weak solution if and only if all squares in the representation of the corresponding 
cover pattern have a value of one ( l e i  = 64) . 

To optimize the computation of l e i ,  we interpret each row of the chessboard as a 
single byte. For a given configuration, each bit will be 0 or 1 depending on whether 
the corresponding chess square is safe or attacked. The value of this byte is then used 
as an index in a lookup table containing a count of the number of attacked squares, 
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1 1 1 1 1 1 1 0 
0 0 1 0 0 0 0 1 
0 0 0 1 0 0 0 1  
0 0 0 0 1 0 0 1  

1 1 1 0 0 1 0 1  
1 0 1 0 0 0 1 1 
1 1 1 0 0 0 0 1 
0 0 0 0 0 0 1 1 

Figure 9 A cover pattern shown graph i ca l l y  and n u mer ica l l y. Attacked squares are 
shown i n  b l ack. 

which amounts to the number of ones for that particular binary pattern. For example, 
the top row in FIGURE 9 has all but the last square attacked and the corresponding 
byte value in this instance would be 254 (FEHEx). This value is then used as an index 
to the lookup table entry containing the number 7, which corresponds to the number of 
binary ones in the byte value FEHEX· The computation of l e i ,  the number of attacked 
squares for a given configuration, can thus be computed with eight lookups and a sum, 
significantly reducing the computational complexity of the operation. 

Conclusion We applied backtracking to exhaustively compute the Kling Cover Prob
lem and presented three rules for reducing the search space. Our prune rules, though 
effective, used simple principles and did not operate close to the root of the tree. But 
our results revealed interesting trends that might be exploited to create more effec
tive prune rules .  Finding effective prune rules requires insight into the nature of the 
problem. The more effective a prune rule is, the more it begins to resemble a logical 
argument. A traditional proof that a problem has no solutions is essentially a prune rule 
that operates on the first node of the tree ! Because effective prune rules are difficult 
to create for the Kling chess problem, we do not expect a general proof to be found 
easily. But finding more sophisticated prune rules that operate closer to the root may 
help provide the insight necessary for a traditional proof. 

For some combinatorial problems like this one, applying the computing power 
available today requires little more than the most basic implementation, allowing us 
to construct an exhaustive proof with a limited understanding and no real insight into 
the problem itself-in short, using "brute force." In contrast, a traditional proof reveals 
the nature of a problem using symbols, words, and logic that can be verified by other 
human beings. A traditional proof appeals to us because it elegantly captures the truth 
we are attempting to explain. Exhaustive computation may provide us with an answer 
we can believe, but it leaves the question in some sense unresolved. In spite of this , it is 
a powerful tool and some classic problems have already benefited from this relatively 
new technique. 

One of the earliest examples of incorporating exhaustive computation into a proof 
is the Haken-Appel proof of the four-color problem. The problem, which dates to 
1 852 [9] , asks whether one can color the regions on an arbitrary two-dimensional map 
using only four colors, such that no two regions that share a border have the same 
color. This remained an open problem until 1 976, when Wolfgang Haken and Kenneth 
Appel proved that any map could be shown to be equivaJent to one of 1 900 special 
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cases .  Then, using a computer, they checked each special case [1] . Even though their 
proof consisted of a traditional logical argument, it made essential use of exhaustive 
computation. 

Haken-Appel ' s  proof has been disparagingly referred to as a "silicon proof," a type 
of proof for which only another computer can carry out the customary validity check. 
The mathematical community raised two objections. One objection was aesthetic : the 
proof failed to reveal a simple, single, fundamental understanding of the problem. A 
second objection was analytical : the program was thousands of lines long and de
pended on a compiler and operating system, which themselves had not been proven 
correct. Despite these limitations, the Haken-Appel proof remains the accepted solu
tion to the four-color problem. 

Applying exhaustive techniques to study, and perhaps solve, combinatorial prob
lems is becoming more feasible with each advance in computing power. A traditional 
proof is naturally preferred to a proof by exhaustion, but some problems remain un
solved using traditional means leaving us to wonder if there are limits to purely sym
bolic methods. The computer presents us with a tool for attacking problems by exhaus
tion although its use is somewhat unsatisfying because it involves unverified compo
nents such as operating systems, compilers, and chip design. (The floating point error 
found in Intel' s Pentium III processor is a good example of the problems unverified 
chip design can bring. ) Are we as mathematicians going to be forced to give up veri
fying proofs by hand, just as scientists have been forced to accept from microscopes 
and telescopes evidence that cannot be directly perceived? 
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50 Years Ago i n  the MAGAZ I N E  
From "Science in the Modem World," by Marston Morse, Vol. 28, No. 4, (Mar.
Apr. , 1 955) , 209-2 1 1 : 

Small wonder, then, that a large proportion of the young mathematicians 
become technicians in limited fields mostly connected with the founda
tions. Some leap over the foundations and proceed at once to the front as 
represented by the material world; these are the ones whom we call ap
plied mathematicians . . . .  Then there are the few-all too few-who aim 
to build the whole edifice of mathematics, neither lingering too long over 
the foundations ,  nor too hastily testing their strength at the front. Such a 
mathematician was Riemann, who, fifty years before Einstein, built the 
structure in mathematics whose counterpart in physics is relativity. 
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Proposa l s  
To be considered for publication, solutions should be received by September 1 ,  
2005. 
1716. Proposed by Cafe Dalat Problem Solving Group, Washington D. C. 

Let k , n be integers with n :=:: 1 and 0 ::::: k ::::: n . Prove that there is an n x n matrix 
A of Os and l s  with per(A) = k. (Here per( A) denotes the permanent of A.) 
1717. Proposed by Mohammed Aassila, Strasbourg, France 

Let ABC be a triangle, and let A 1 ,  B1 ,  C 1 be on BC, CA, AB, respectively, with none 
of A 1 , B 1 , C 1 coinciding with a vertex of ABC. Show that if 

then 

1718. Proposed by David Callan, Madison, WI. 
Let k, n be integers with 1 ::::: k ::::: n . Prove the identity 

I: (k � 1) (n - (� � 1)) 2k-i-l = I: (k --: i) (n - i) · 
i=O l k l i=O l k 

1719. Proposed by G.R.A. 20 Problems Group, Universita di Roma, Tor Vorgata, 
Rome, Italy. 

From an (n + 4) x (n + 4) checkerboard of unit squares, the central n x n square 
is removed to leave a square frame of width 2. In how many ways can the frame be 
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tiled with 1 x 2 dominos? (Two different tilings that can be made identical through a 
rotation of the frame are considered different.) 

1720. Proposed by Stephen J. Herschkorn, Highland Park, NJ. 
Let X be a standard normal random variable and let a be a positive number. Show 

that the conditional expectation E[X I I X - al < t ] is strictly decreasing in nonnega
tive t . 

Qu ick ies 
Answers to the Quickies are on page 1 64. 
Q949. Proposed by Vasyl Dmytrenko and Felix Lazebnik, University of Delaware, 
Newark, DE. 

Let j, k , n be integers with j, k :::: 0 and n :::: 1 . Prove that 

Q950. Proposed by William P. Wardlaw, U. S. Naval Academy, Annapolis, MD. 
Let F be a field and let B be a matrix over F. Suppose that B has characteristic 

polynomial p 8 (x) = x3 - x . Prove that there is no matrix A with entries in F such 
that B is the classical adjoint of A. (By classical adjoint we mean the transpose of the 
matrix of cofactors .) 

So l ut ions 
Extremes b y  Majorization April 2004 

1691. Proposed by Murray S. Klamkin, University of Alberta, Edmunton, Alberta, 
Canada. 

Let p, r , and n be integers with 1 < r < n , and let k be a positive constant. Deter
mine the maximum and minimum values of 

t _!L, j= l 1 + ktj 

where x; ::=: 0, 1 � i � n with x1 + x2 + · · · + xn = 1 ,  and tj = Xj + xj+ l + · · · Xj+r-h 
where X;+n = X; .  

Solution by the proposer. 
The second derivative of F(t ) = tP j ( l  + kt) is 

II tp-2 (p(p - 1 ) + 2kp(p - 2) t + k2 (p - 1 ) (p - 2) t2 ) F (t) = ---'------------,------_...:_ ( 1 + kt? . 

Thus F is concave for p = 1 and convex for p :::: 2 and p � 0. 
Noting that for any choice of xjs we have t1 + t2 + · · · + tn = r , we apply a ma

jorization result due to Hardy, Littlewood, and P6lya (see A. W. Marshall and I. Olkin, 
Inequalities: Theory of Majorization and its Applications, Academic Press, NY, 1 979). 
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Given a vector y = (y" . . .  , Yn ) , let Y! I l ·  Y!2l • . . .  , Y!nl be the components of y in 
decreasing order. For vectors y and z, write y -< z if L�=l Y!n ::::: L�=I Z[j] for 
1 ::::: k < n and 2:;=1 Y!n = I:;=I Z[j ] · If g is convex on [a , b] , y, z E [a , b]n , 
and y -< z, then 2:;=1 g (yj ) ::::: 2:;=1 g (zj ) .  

For all choices of x j s we have 

( r r r ) - ,  - ,  . . .  , - -< (tJ , t2 , . . .  , tn ) -<  ( 1 , 1 , . . .  , 1 , 0, . . .  , 0) ,  n n n 
where the last n-tuple consists of r 1 s  followed by (n - r) Os. Thus, if p = 1 (so F is 
concave), we have 

n 
L F (ti ) ::::: n F  (�) = ___!!!____ and 
i= I n n + kr 

n r L F (ti ) ::: r F ( l )  + (n - r)F (O) = - . 
i= l 1 + k  

If p ::: 2 or p ::::: 0 (so F is convex) then 

1; F (tJ ::: n F (�) = 
nP-2 (:P 

+ kr)
, 

and for p ::: 2 or p = 0, 
n r L F (lj ) :S: r F ( l )  + (n - r)F (O) = -- . 

i= l 1 + k 

If p < 0, the sum is not bounded above. 
Also solved by Chip Curtis, Minh Can, Enkel Hysnelaj (Australia), Stephen Kaczkowski, Elias wmpakis 

(Greece), and Li Zhou. 

Fibonacci and Lucas Polynomials April 2004 

1692. Proposed by Mario Catalani, Department of Economics, University of Torino, 
Torino, Italy. 

Let Fn = Fn (x ,  y) and Ln = Ln (x , y) be the bivariate Fibonacci and Lucas poly
nomials, defined by 

F0 = 0, 
L0 = 2, 

Fn = x Fn- 1 + y Fn-2 •  n ::: 2 

Ln = XLn- 1 + yLn-2 .  n ::: 2 . 

Assume that x =I= 0, y =I= 0, and x2 + 4 y =I= 0. Prove that 

F. (L 2m+ ! ) _ Fn(2m+I ) (X , y) 
n 2m+l • Y - F ( ) 2m+ ! X , Y 

( 2m ) F2mn (X , y) 
and Fn L2m • -y = · 

F2m (X , y) 

Solution by Daniele Donini, Bertinoro, Italy. 
We first prove, by induction, that 

i+ l  i Fi+j = LJj + (- 1 ) y Fj-i for j ?: i ?: O. ( 1 ) 

For i = 0 and any j ::: 0, equation ( 1 ) reduces to Fj = 2Fj - Fj . For i = 1 expres
sion ( 1 ) is FH1 = x Fj + y Fj- J . which is also true for all j ::: 1 . Now assume that ( 1 ) 
is true for i = k - 1 and i = k for some k ::: 1 . Then for j ::: k + 1 we have 
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Lk+! Fj + ( - 1 )k+2yk+ 1 Fj-(k+l l  

= (xLk + yLk_ , ) Fj + (- 1 )k/ (yFj-k- ! ) 

= (xLk + yLk_ ! ) Fj + (- 1 )k/{Fj-k+ l - x Fj-k) 

= x (Lk Fj + ( - 1 )k+ ' / Fj-k) + y (Lk-! Fj + ( - l )k/- 1 Fj-(k-o) 

= x Fk+j + yFk+j- !  = Fk+Hl · 

1 6 1 

This establishes ( 1 )  for i = k + 1 .  Substituting i = k and j = k (n + 1 )  into ( 1 )  we 
obtain 

Fk<n+Zl = Lk Fk<n+l l  + ( - 1 )k+1 / Fkn • k, n :::: 0. 

Now fix k. Consider the sequences {Gn } and {Hn } ,  defined by 

Gn = Fk Fn (Lt .  (- l )k+' /) and Hn = Fkn • 

respectively. These sequences satisfy the same recurrence relation, 

G0 = 0 , 

H0 = 0, 

Gn+Z = Lk Gn+ l + (- 1 )k+ 1 yk Gn , n :::: 0, 

Hn+Z = Lk Hn+l + (- 1 )k+l yk Hn , n :::: 0, 

where the last equality follows from (2) .  It follows that Gn = Hn for all n , that is 

Fkn = Fk Fn (Lt .  (- 1 )k+ ' /) . 

This is equivalent to the both of the desired equalities .  

(2) 

Also solved by Michel Bataille (France), Jany C. Binz (Switzerland), Brian Bradie, Enkel Hysnelaj (Australia), 
Harris Kwong, Rolf Richberg (Germany), Heinz-Jiirgen Seiffen (Germany), Ricardo M. Torrej6n, Chu Wenchang 
and Maglio Maria Rosaria (Italy), Li Zhou, and the proposer. 

Rarely Equilateral April 2004 

1693. Proposed by Erwin Just (Emeritus) and Norman Schaumberger (Emeritus), 
Bronx Community College of the City University of New York, Bronx, NY. 

Let A = (p ,  q ) ,  B = (p2 , q2 ) ,  and C = (p3 , q3 ) be the vertices of a nondegenerate 
triangle. 

a. For how many pairs (p , q) is triangle ABC equilateral? 
b. If p or q is rational, can triangle ABC be equilateral? 

Solution by Robert L. Doucette, McNeese State University, Lake Charles, IA. 
We show that there are only two pairs (p, q) for which the triangle can be equilateral 

and that there are no such pairs with p or q rational. 
Triangle ABC is nondegenerate if and only if p , q fj. {0, 1 } and p =1= q . We have 

AB = BC and AC = BC if and only if (p , q) is a solution of the system 

x2 (x - 1 )2 (x2 - 1 )  + l<Y - 1 ) 2 (l - 1 )  = 0 

x2 (x - 1 )2 (2x + 1 )  + l<Y - 1 )2 (2y + 1 )  = 0. 

If (p , q) is a solution to this system with p , q ¢. {0, 1 } ,  then 

(p2 - 1 ) (2q + 1 )  = (q2 - 1 ) (2p + 1 )  from which (2pq + p + q + 2) (p - q) = 0. 

Hence, MBC is a nondegenerate equilateral triangle if and only if (p , q) is a solution 
of the system 
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2xy + x + y + 2 = 0 
x2 (x - 1 )2 (2x + 1 ) + l<Y - 1 )2 (2y + 1 ) = 0. 

For convenience, let u = 2x + 1 and v = 2y + 1. The system becomes 

u v  + 3 = 0 
(u - 1 )2 (u - 3)2u + (v - 1 )2 (v - 3)2v = 0. 

( 1 ) 

Letting f (x) = (x - 1 )2 (x - 3)2x ,  we  see that solutions to ( 1 ) arise from solutions to 

(2) 

For x < - 1 ,  f(x) < -64 and for 0 < x < 3, f (x) < 3. It follows that for x E 
(-oo,  - 1 )  U (0, 3) we have f (x) + j(-3/x) < -64 + 3 < 0. Working with J' (x) ,  
i t  is not difficult to see that f is increasing on (-oo,  0) and on (3 ,  oo) . I t  follows 
that as a function of x, j (-3/x) is increasing on (- 1 , 0) and (0, oo).  Therefore 
f (x) + f(  -3/x) is increasing on ( - 1 ,  0) and (3 ,  oo) . Note that f(  - 1 ) + f(3) = -64 
and that f (x) + f (-3 j x) ---+ oo as x ---+ o- or x ---+ oo. Thus (2) has exactly two so
lutions x0 and x1 with - 1 < x0 < 0, x1 > 3, and x0x1 = -3 .  It follows that ( 1 ) has 
exactly two solutions, (u , v) = (x0 , x 1 ) and (u , v) = (x1 , x0) . 

Triangle ABC is a nondegenerate equilateral triangle if and only if 

(p, q) = (� (xo - 1 ) , � (x, - 1 )) � (-0.8779 1 ,  1 .4846) 

or 

(p, q) = (� (x , - 1 ) ,  � (xo - 1 )) . 
Equation (2) is equivalent to the equation p (x) = 0, where p is a monic polynomial 

of degree 1 0 with integer coefficients and constant term -243 . By the rational root 
theorem, p (x) = 0 has no rational solution in the interval ( - 1 ,  0) . It follows that both 
x0 and x1 are irrational. Hence if p or q is rational, then !::::.ABC cannot be equilateral . 

Also solved by Roy Barbara (Lebanon), Michel Bataille (France), Jany C. Binz (Switzerland), John Christo
pher, Chip Curtis, Knut Dale (Norway), Daniele Donini (Italy), G.R.A.20 Problems Group (Italy), Mike Hitchman, 
Peter W Lindstrom, H. T. Tang and T. Tsang, Ajaj A. Tarabay and Bassem B. Ghalayini, Dave Trautman, Li Zhou, 
and the proposer. There were two incorrect submissions. 

A Radius of Convergence April 2004 

1694. Proposed by Oscar Ciaurri, Universidad de La Rioja, La Rioja, Spain. 
For a � 1 ,  a sequence {bn }n;::o is defined by 

bn = t(- l)n-k (a) ( -: ) · 
k=O k 2n k 

A sequence {an }n;::o is then defined by ao = 1 and, for n � 1 ,  by L�=O an-kbk = 0. 
Find the value of lim SUPn-Hx> �-
Solution by Michael Goldenberg and Mark Kaplan, The Ingenuity Project, Baltimore 
Polytechnic Institute, Baltimore, MD. 

For - 1 < x < 1 let 
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h (x) = c � :; r = (t, (;) (ix)P) (;(- ! )' ( �a) (ix)') 
= � (t,(- 1 )"-' (�) (_

-:k)) (ix)" 

Define g for - 1 < x < 1 by 

1 63 

g(x) = � (h (x) + h (-x)) = f (f(- 1 )2n-k (a) ( -: )) (ix)2n = f bnx2n . 
2 n=O k=O k 2n k n=O 

Now let x = tan(e/2) , where -n/2 < e < n/2. Then h (x) = (e;11 )"' and, because g 
is real, 

eilia + e-ilia 
g (x) = 

2 
= cos(2a arctan x ) .  

Because g i s  analytic and nonzero i n  a neighborhood of 0 , 1 I g (x) i s  also analytic i n  a 
neighborhood of 0. From the definition of an we have 

00 1 L anx2n = -- = sec(2a arctan x) .  
n=O g (x) 

The power series about 0 for sec z has radius of convergence Tr /2 .  I t  follows that the 
power series about 0 for gix) has radius of convergence R = tan(Z, ) ,  and hence that 

lim sup \ITaJ = ..!_ = cot (!!.._) . n-+oo R 4a 
Also solved by Michel Bataille (France), Daniele Donini (Italy), Rolf Richberg (Germany), Li Zhou, and the 

proposer. 

Is it Real? April 2004 

1695. Proposed by Shalom Feigelstock, Bar-Ilan University, Ramat-Gan, Israel. 
A field F is a real field if - 1  cannot be written as a sum of squares. Prove that a 

field F is a real field if and only if for every n x m matrix A with entries from F, 
rank( A) = n implies that AA T is invertible. 

Solution by Jim Delany, California Polytechnic State University, San Luis Obispo, CA. 
Let A be an n x m matrix of rank n . If the n x n matrix AA T is not invertible, then 

there is a nonzero vector u for which uAAT = 0. Because A has rank n ,  uA =I= 0. Let 
v = uA = (x1 , . . .  , Xm) and find k such that xk =/= 0. Now 

so 0 = vvT = I::7= I x] . Dividing by xi; we find 

t (Xj )
2 
= - 1 ,  

j=i Xk j# 

and the field is not a real field. 
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Conversely, i f  xf + · · · + x;, = - 1 ,  then the matrix A = (x 1 , . . .  , Xm , 1 ) has rank 
one while AA T = 0. 

Also solved by Abhishek Banerjee (India), Roy Barbara (Lebanon), Michel Bataille (France), Daniele Donini 
(Italy), Robert L. Doucette, Erin Emerson, Michael Goldenberg and Mark Kaplan, Eugene Herman, David E. 
Manes, Northwestern University Math Problem Solving Group, Li Zhou, and the proposer. 

Answers 
Solutions to the Quickies from page 1 59. 
A949. Solution 1, by the poser. 

We expand ( (l + x )k - I )n in two ways. We first write 

For the second expansion, 

( l )  

From (2) we  see that in the expansion of ( ( 1  + X )k - on ' the coefficient of xk is 0 
for 0 ::::; k ::::; n - 1 ,  and kn for k = n . The desired identity follows by comparing with 
the coefficients of these powers of x in ( 1 ) . 
Solution 2, from the editors. 

Take balls numbered 1 ,  2, . . .  , kn . Divide them into n sets with consecutive integer 
labels, { 1 ,  2, . . .  , k } ,  { k + 1 ,  . . .  , 2k} ,  and so forth. Call these sets flocks . 

We count the number of ways to pick j balls from exactly n different flocks ; call this 
number W. The top term on the left is e) . This is the number of ways to pick j balls 
without regard to flock, and gives an overcount of W. To compensate for the overcount, 
SUbtract the term c� 1 ) e(nj- l )) ,  the number of ways to pick j balls from at most n - 1 
different flocks . However, this adjustment overcompensates for the number of ways 
to pick balls from n - 2 flocks. To account for this add C�2) (k(nj-2)) .  This, in tum, 
overcounts the number of ways to pick balls from at most n - 3 flocks. Continuing 
with the inclusion/exclusion argument, we see that the lefthand side equals W. 

On the other hand, if j < n , then there are no ways for each of the n flocks to be 
represented, so W = 0. If j = n, then there are k choices for the ball from each of the 
n flocks, so W = kn . 
A950. Because p 8 (x) = (x + 1 )x (x - 1) , B has characteristic roots - 1 ,  0 and 1 .  
Hence B is a singular 3 x 3 matrix of rank 2 .  Suppose that B = adj (A) for some ma
trix A .  Then AB = (det A)l  cannot be invertible, so AB = 0. Since B = Adj (A) =!= 0, 
the rank of the 3 x 3 matrix A must be 2. This implies that the columns of B are in the 
one dimensional null space of A, which implies that the rank of B must be at most 1 .  
This contradiction shows that B is not the classical adjoint of any matrix. 



R E V I E W S  

PAU L j .  CAM PB ELL,  Editor 
Beloit  Col lege 

Assistant Editor: Eric S. Rosenthal, West Orange, NJ. Articles and books are selected for this 

section to call attention to interesting mathematical exposition that occurs outside the main

stream of mathematics literature. Readers are invited to suggest items for review to the editors. 

Mandelbrot, Benoit B . ,  and Richard L. Hudson, The (mis)Behavior of Markets: A Fractal 

View of Risk, Ruin, and Reward, Basic Books, 2004; xxiv + 328 pp, $27 .50. ISBN 0-465-
04355-0. Mandelbrot, Benoit B . ,  Fractals and Scaling in Finance: Discontinuity, Concentra

tion, Risk, Springer, 1 997; x + 55 1 pp, $54.95 . ISBN 0-387-98363-5 . Olson, Steve, The ge
nius of the unpredictable, Yale Alumni Magazine (November/December 2004) 36--43 ;  http : 

1/yalealumnimagazine . com/i s sue s/current/mandelbrot . html . 

We celebrate this year the 1 00th anniversary of Einstein's marvelous year of papers on the size 
of molecules, light as composed of particles, special relativity theory, and the existence of atoms 
by measuring Brownian motion of particles in solution. Just five years earlier, Louis Bachelier 
had presented his thesis that financial markets can be described by the laws of Brownian mo
tion. Bachelier's ideas sank from sight but were resurrected half a century later in what has 
become financial orthodoxy, with its key assumption that price changes in financial markets are 
normally distributed and statistically independent of past changes. This orthodoxy culminated 
in the Nobel Prize-winning Black-Scholes method of valuing options. But Benoit Mandelbrot, 
father of fractal geometry, strongly disputes those assumptions and asserts that price changes 
are correlated (with a long memory) and follow a power law of scaling (longer tails) .  The re
sults, he says, are that "trouble runs in streaks," markets are riskier than portrayed, and financial 
"bubbles" are inevitable. He gives data to support his claims and offers a "multifractal" model 
instead. His new book is eminently readable and engaging; the older book reprints the original 
papers on which his theories of scaling in finance are based; and the Yale Alumni Magazine 
article is based on an interview with Mandelbrot. 

Brodie, Josh, and Elyse Graham, Math profs link particle actions, human free will, Daily 

Princetonian (24 November 2004) 1-2 ;  http : I /www . dailyprincetonian . com/archives/ 

2004/ 1 1 /24/news / 1 1569 . shtml. Collins, Simon, We're not alone in the universe of free will, 
New Zealand Herald, (26 January 2005) ,  http : //TNWW . nzherald . eo . nz/ index . efm?c_id= 

5&0bj ectiD=10008051 . 

Mathematics has a way of concretizing intuition about the everyday world; to take food as 
an example, we have the Pancake Theorem, the Ham Sandwich Theorem, and the No Free 
Lunch Theorem. Simon Kochen and John H. Conway (Princeton) have added another (non
food) instance, the Free Will Theorem: Given three assumptions, if even one person has free 
will, then the behavior of all particles in the universe is indeterminate. The first two assumptions 
are restatements of known phenomena in quantum mechanics, and the third is that information 
cannot cause instantaneous change at a distance. (Unfortunately, there is already a (conflicting?) 
No Free Will Theorem: To any nondeterministic finite automaton corresponds a deterministic 
one that accepts exactly the same input strings.)  "[Kochen and Conway] have not yet decided 
when or where they will publish their results" : Such inaction may be either an application of or 
a counterexample to the theorem, depending on whether they are waiting to exercise free will 
or are not free to do so ! 

1 65 
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Sharp, John, Surfaces: Explorations with Sliceforrns, QED Books, 2004; x + 28 1 pp, $34.95 (P) . 
ISBN 1-85853-201-9. 

The Danish mathematician Olaus Henrici invented in the 1 9th century a type of model of a ge
ometric surface that displays the surface in terms of slices. The simplest example is a model of 
two planes made by slicing each of two rectangles halfway through and slotting them together; 
a multi-plane version is often used to separate bottles in boxes. Author Sharp calls such models 
"sliceforms" and devotes this book to telling how to make sliceform models of quadric sur
faces, surfaces of revolution, ruled surfaces, algebraic surfaces, and polyhedra, including using 
software to design the pieces needed. 

Gelman, Andrew, and Deborah Nolan, Teaching Statistics: A Bag of Tricks, Oxford University 
Press, 2002; xv + 299 pp, $ 1 20, $45 (P). ISBN 0-1 9-857225-5 , 0-1 9-857224-7 . 

Many, if not most, of the introductory statistics courses in the U.S.  are taught by mathemati
cians who were not trained as statisticians. They-and the statisticians, too-will find this book 
an absolute gold mine of tested ideas for in-class activities, demonstrations, and group work 
for such a course, as well as for student projects. The "tricks" are organized and classified ac
cording to course topic. One-fifth of the book is devoted to similar activities for more advanced 
courses in decision theory and Bayesian statistics, survey sampling, mathematical probability, 
and mathematical statistics. The authors suggest how to make time for all (or some) of the activ
ities; the activities promote motivation and teach concepts experientially, hence can substitute 
for some class discussion-but not for the great extent of practice in problem-solving that I find 
many of my students badly need: translating (from English to statistics), analyzing, calculating, 
and interpreting. The section of Notes tells where the data sets, data displays, and other ma
terials came from, but beware: Several URLs no longer work, including those for sites of the 
authors, though you can still find the materials by rooting around. 

Polya, G.,  How to Solve It: A New Aspect of Mathematical Method, Princeton University Press, 
2004; xxvii + 253 pp, $ 1 6.95 (P) . 

Those of us who have been in the profession for more than a few years may not realize that our 
students do not always discover on their own what we take for granted in our own backgrounds. 
And so we must tell them: You need to be aware of this, try that, read a particular book-be 
aware of Mathematics Magazine, join the MAA-and read Polya's classic How to Solve It. The 
book, now with a new foreword by John H. Conway, has sold over a million copies since 1 945. 
It teaches the reader how to understand a mathematical problem, devise a plan for it ,  carry 
out the plan, and reflect back on the result. In dialogue format with numerous examples from 
elementary algebra and geometry, it encourages a heuristic approach, whether the problem is a 
"problem to find" or a "problem to prove." And it encourages a sense of humor: "If you can't  
solve the proposed problem, solve an easier one." Every mathematics student should experience 
and live this book. 

MacMahon, P.A. ,  New Mathematical Pastimes, edited by Paul Garcia, Tarquin Reprints, 2004; 
xxx + 1 1 8 pp, £15  (P) . ISBN 1-8996 1 8-64-3 . Book in CD-ROM form with color versions of 
the diagrams and additional material, £ 1 5 .  ISBN 1-1 85853220-5 . (From QED Books, Pentagon 
Place, 1 95b Berkhamsted Road, Chesham, Bucks HP5 3AP, United Kingdom; http : I /www . 

maths ite . co . uk/Home/Mathemat ics/Re creat i onal%20Mathemat i c s . )  

Percy A. MacMahon ( 1 854-1 929) is known for work in  combinatorics (his combinatorics books 
are still in print). This book was issued on the occasion of a conference commemorating the 
1 50th anniversary of his birth. It returns to print his major work in recreational mathematics, 
whose main topics are how to construct repeating patterns and how to construct and solve 
edge-matching puzzles in two and three dimensions (often called Vess puzzles). The book's 
figures are in black and white; the CD-ROM version contains colorized versions and additional 
resources . (Thanks to Antony Unwin, Augsburg University.) 



N E W S  A N D L E T T E R S 

Problems 

33rd United States of America Mathematical Olympiad 

April 27 and 28, 2004 

edited by Titu Andreescu, Zuming Feng, and Po-Shen Loh 

1 .  Let ABCD be a quadrilateral circumscribed about a circle, whose interior and exte
rior angles are at least 60° . Prove that 

� IAB3 - AD3 I ::S IBC3 - CD3 1 ::S 3 1AB3 - AD3 1 . 

When does equality hold? 
2. Suppose a1 ,  • • •  , an are integers whose greatest common divisor is 1 .  Let S be a set 

of integers with the following properties : 
(a) For i = 1 , . . .  , n , a; E S. 
(b) For i , j = 1 , . . .  , n (not necessarily distinct), a; - aj E S. 
(c) For any integers x ,  y E S, if x + y E S, then x - y E S. 

Prove that S must be equal to the set of all integers . 
3 . For what real values of k > 0 is it possible to dissect a 1 x k rectangle into two 

similar, but incongruent, polygons? 
4. Alice and Bob play a game on a 6 by 6 grid. On his or her tum, a player chooses 

a rational number not yet appearing in the grid and writes it in an empty square 
of the grid. Alice goes first and then the players alternate. When all squares have 
numbers written in them, in each row, the square with the greatest number in that 
row is colored black. Alice wins if she can then draw a line from the top of the grid 
to the bottom of the grid that stays in black squares, and Bob wins if she can't. (If 
two squares share a vertex, Alice can draw a line from one to the other that stays in 
those two squares.) Find, with proof, a winning strategy for one of the players . 

5 . Let a , b, and c be positive real numbers . Prove that 

(a5 - a2 + 3) (b5 - b2 + 3) (c5 - c2 + 3) :::: (a + b + c)3 • 

6. A circle w is inscribed in a quadrilateral ABCD. Let I be the center of w. Suppose 
that 

(AI + D/ )2 + (BI + C/ )2 = (AB + CD)2 • 
Prove that ABCD is an isosceles trapezoid. 

Note: For interested readers, the editors recommend the USA and International Math
ematical Olympiads 2004. There many of the problems are presented together with a 
collection of remarkable solutions developed by the examination committees, contes
tants, and experts, during or after the contests . 
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So l ut ions 

1 . By symmetry, we only need to prove the first inequality. Because quadrilat
eral ABCD has an incircle, we have AB - AD = BC - CD. It suffices to prove 
that (ABz + AB · AD +  ADz)/3 :::; BCz + BC · CD +  CDz . By the given condi
tion, 60° ::::: LA , LC ::::: 1 20° , and so 1 /2 � cos A , cos C � - 1 /2. Applying the 
Law of Cosines to triangle ABD yields BD2 = ABz - 2AB . AD cos A + ADz � 
ABz - AB · AD + ADz � (ABz + AB · AD + ADz) j3 . Equality holds if and only if 
AB = AD. On the other hand, applying the Law of Cosines to triangle BCD yields 
BDz = BCz - 2BC · CD cos C + CDz :::; BCz + BC · CD + CDz . Combining the 
above inequalities gives the desired result. For the equality case, we must have 
AB = AD. This condition is also sufficient, because all the entries in the equali
ties are 0. Thus, equality holds if and only if ABCD is a kite with AB = AD and 
BC = CD. 

2. For integers a 1 , • • •  , an E Z with greatest common divisor 1 ,  we say that S is gen
erated by a 1 , • • •  , an if conditions (a), (b), (c) in the problem hold. By the given 
conditions, we can easily deduce that if S is generated by a 1 , • • •  , an , then 

(d) 0 = a1 - a1 E S by (b) . 
(e) -s = 0 - s E S whenever s E S, by (a) and (d) . 

It is then not difficult to show that 

• fact 1. If S is generated by a 1 , • • •  , an , then S is generated by a 1 , az - a1 ,  
. . .  , an - a1 • 

• fact 2. If s is generated by a! ' . . .  ' an ' then s is generated by -a! ' az , . . .  ' an . 
Now suppose S is generated by a1 , • . •  , an (and that none of the ai are zero, without 
loss of generality) ; by fact 2, we may assume without loss of generality that ai > 0 
for each i .  Choose integers b 1 , • • •  , bk > 0 with greatest common divisor 1 such 
that S is generated by b 1 , . • •  , bk and b1 + · · · + bk is as small as possible. Note 
that the bi must all be distinct (otherwise we could have omitted one) , so we may 
assume without loss of generality that b1 is smaller than the others . 

Suppose k > 1 ,  and put c1 = b1 and Cs = bs - b1 for s = 2, . . .  , k. Then 
gcd(c 1 , • • •  , ck ) = gcd(b1 , • . •  , bk ) = 1 ,  and S is generated by c 1 , • • •  , ck by fact 1 .  
But c1 + · · · + ck = (b1 + · · · + bk) - (k - 1 )b1 < b1 + · · · + bt . contradiction. 
Hence k = 1 and b1 = 1 .  

All that remains is to check that if S is generated by 1 ,  then S = Z. We 
show that 0, 1 ,  . . .  , k E S for all positive integers k, by induction on k. Note that 
- 1 , 0, 1 E S by (d) and (e), so the base case k = 1 is okay. As for the induction 
step, if O, 1 , . . . , k E S, then k + 1 = k - ( - 1 ) E S by (c) . Thus the induction goes 
through, and all nonnegative integers are in S. By (e), all negative integers are also 
is in S. Hence S = Z, and we are done. 

3. We will show that a dissection satisfying the requirements of the problems is pos
sible if and only if k i= 1 .  

We first show by contradiction that such a dissection is not possible when k = 1 .  
Assume that we have such a dissection. The common boundary of the two dissect
ing polygons must be a single broken line connecting two points on the boundary 
of the square (otherwise either the square is subdivided in more than two pieces or 
one of the polygons is inside the other) . The two dissecting polygons must have the 
same number of vertices. They share all the vertices on the common boundary, so 
they have to use the same number of corners of the square as their own vertices. 
Therefore, the common boundary must connect two opposite sides of the square 
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(otherwise one of the polygons will contain at least three comers of the square, 
while the other at most two). However, this means that each of the dissecting poly
gons must use an entire side of the square as one of its sides, and thus each polygon 
has a side of length 1 . A side of longest length in one of the polygons is either a 
side on the common boundary or, if all those sides have length less than 1 ,  it is a 
side of the square. But this is also true of the other polygon, which means that the 
longest side length in the two polygons is the same. This is impossible since they 
are similar but not congruent, so we have a contradiction. 

We now construct a dissection satisfying the requirements of the problem when 
k =I= 1 . Notice that we may assume that k > 1 ,  because a 1 x k rectangle is similar 
to a 1 x 1 I k rectangle. 

We first construct a dissection of an appropriately chosen rectangle (denoted by 
ABCD below) into two similar incongruent polygons . The construction depends 
on two parameters (n and r below). By appropriate choice of these parameters we 
show that the constructed rectangle can be made similar to a 1 x k rectangle, for 
any k > 1 . The construction follows . 

Let r > 1 be a real number. For any positive integer n ,  consider the following 
sequence of 2n + 2 points : A0 = (0, 0) , A 1 = ( 1 , 0) , A2 = ( 1 ,  r ) , A3 = ( 1 + r2 , r) , 
A4 = ( 1  + r2 , r + r3 ) , A5 = ( 1 + r2 + r4 , r + r3) , and so on, until 

A2n+ l = ( 1 + r2 + r4 + . . .  + r2n , r + r3 + rs + . . .  + r2n- 1 ) .  
Define a rectangle ABCD by A = Ao, C = A2n+ 1 , 

B = ( 1  + r2 + · · · + r2n , 0) , and D = (0, r + r3 + . . .  + r2n- 1 ) .  

The sides of the (2n + 2)-gon A 1 A2 · · · A2n+l B have lengths 

and the sides of the (2n + 2)-gon A0A 1 A2 . . .  A2nD have lengths 

respectively. These two polygons dissect the rectangle ABCD and, apart from orien
tation, it is clear that they are similar but incongruent, with coefficient of similarity 
r > 1 . The rectangle ABCD and its dissection are thus constructed. 

The rectangle ABCD is similar to a rectangle of size 1 x fn (r ) ,  where 

1 + r2 + . . .  + r2n fn (r) = . r + r3 + . . .  + r2n- 1 

It remains to show that fn (r) can assume any value k > 1 for appropriate choices 
of n and r . Choose n sufficiently large so that 1 + 1 In < k. Since 

fn ( l ) = 1 + � < k < k 1  + k2 + k4 + . . . + k2nk2 + k4 + . . .  + k2n = fn (k) 
n 

and fn (r) is a continuous function for positive r , there exists an r such that 1 < 
r < k and fn (r) = k, so we are done. 

4. Bob has a winning strategy. Let ( i ,  j )  denote the square in the i th row and jth 
column. Define set A = { (4, 1 ) ,  (4, 2) , (5 , 1 ) ,  (5 , 2) , (5 , 3) , (6, 1 ) ,  (6, 2) , (6, 3) } 
and B = { ( 1 ,  4) , ( 1 ,  5) ,  ( 1 ,  6) , (2, 4) , (2, 5 ) , (2, 6) , (3, 4) , (3, 5 ) , (3, 6) , (4, 5 ) } . 
We claim that after each of his moves, Bob can insure that the maximum num
ber in each row is a square in the set A U B . Based on our claim, Bob can make 
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sure that when all the numbers are written, the maximum square in row 1 i s  in B 
and the maximum square in row 6 is in A. Since there is no path from B to A that 
stays in A U B, Bob wins . 

Now we prove our claim. Bob pairs each square of A U B with a square in the 
same row that is not in A U B, so that each square of the grid is in exactly one pair. 
Whenever Alice plays in one square of a pair, Bob will play in the other square of 
the pair on his next turn. If Alice moves with x in A U B, Bob writes y with y < x 
in the paired square. If Alice moves with x not in A U B, Bob writes z with z > x 
in the paired square in A U B . So after Bob's turn, the maximum of each pair is in 
A U B , and thus the maximum of each row is in A U B . 

5 . For any positive number x , the quantities x2 - 1 and x3 - 1 have the same sign. 
Thus, we have 0 � (x3 - 1 ) (x2 - 1) = x5 - x3 - x2 + 1 ,  or x5 - x2 + 3 � x3 + 2. 
It suffices to show that (a3 + 2) (b3 + 2) (c3 + 2) � (a +  b + c)3 . Expanding both 
sides of the last inequality and applying a3 + a3b3 + 1 � 3a2b and its analogous 
forms and a3 b3 c3 + a3 + b3 + c3 + 1 + 1 � 6abc gives the desired result. (We 
can also using a3 + 2 = a3 + 1 + 1 and its analogous forms and applying either 
Holder's or Cauchy-Schwarz inequalities to finish the proof.) 

6. The key is to recognize that the given identity is a combination of equality cases 
of certain inequalities. By equal tangents, we have AB + CD = AD + BC if only 
if ABCD has an incenter. We will prove that for a convex quadrilateral ABCD with 
incenter I , then 

(AI + Dlf + (BI + C/ )2 � (AB + CD)2 = (AD + BC)2 , (*) 

and equality holds if and only if AD II BC and AB = CD. 
Because circle w is inscribed in ABCD, we can set LDAI = LIAB = a , LAB/ = 

LIBC = b, LBCI = LICD = c, LCD! = LIDA = d, and a +  b + c + d = 180° . Our 
proof is based on the following key lemma. 

LEMMA. If a circle w, centered at I, is inscribed in a quadrilateral ABCD, then 

BP + AI · BI · CI = AB · BC. DI 
Proof Construct a point P outside of the quadrilateral such that triangle ABP is 

similar to triangle DC/. We obtain that LPAI + LPBI = LPAB + LBAI + LPBA + 
LAB! = a +  b + c + d = 1 80° , implying that the quadrilateral PAIB is cyclic. By 
Ptolemy's theorem, we have AI · BP + BI · A P = AB · I P , or 

AI AP BP · - + Bl · - = AB. IP IP (t) 
Because PAIB is cyclic, LIPB = LIAB = a, LAP/ = LAB/ = b, LAIP = LABP = 
c, and LPIB = LPAB = d. Thus triangles AlP and ICB are similar, implying that 
Alf/P = /CfCB and AP/IP = IB/CB. Substituting the above equalities into the 
identity (t) ,  we arrive at 

BP · CI + BP = AB · BC. (t') 
Note also that triangle BIP and triangle IDA are similar, implying that BPI BI = 
/Af/D, or BP = (Alf/D) · I B . Substituting the above identity back into (t') gives 
the desired relation ( * ) , establishing the lemma. 

Now we prove our main result. By the lemma and symmetry, we have 

2 DI CI + - · BI · CI = CD · BC. AI 



VOL .  78, NO. 2 ,  APRI L 2 005 

Adding the two identities ( *) and (f) gives 

BP + CP + (�� + ��) BI · CI = BC(AB + CD) . 

By the AM-GM Inequality, we have AI/DI + DljAI ::;: 2. Thus 

BC(AB + CD) ::;: IB2 + IC2 + 2IB · IC = (BI + CI )2 , 

where the equality holds if and only if AI = DI. Likewise, we have 

AD(AB + CD) ::;: (AI + DI )2 , 

17 1 

where the equality holds if and only if BI = CI. Adding the last two identities gives 
the desired inequality ( *) from the very beginning. 

By the given condition in the problem, all the equalities in the above discussion 
must hold, that is, AI = DI and BI = CI. Consequently, we have a = d, b = c, and 
so LDAB + LABC = 2a + 2b = 1 80° , implying that AD I I BC. It is not difficult 
to see that triangle AlB and triangle DIC are congruent, implying that AB = CD. 
Thus, ABCD is an isosceles trapezoid. 

Poem :  Stopp i ng by E u c l i d 's Proof of the 
I nfi n i tude of Pr i mes 

(with apologies to Robert frost) 

Whose proof this is I think I know. 
I can't improve upon it, though; 
You will not see me trying here 
To offer up a better show. 

His demonstration is quite clear: 
For contradiction, take the mere 
n primes (no more), then multiply; 
Add one to that . . .  the end is near. 

In vain one seeks a prime to try 
To split this number-thus, a lie ! 
The first assumption was a leap; 
Instead, the primes will reach the sky. 

This proof is lovely, sharp, and deep, 
But I have promises to keep, 
And tests to grade before I sleep, 
And tests to grade before I sleep. 

--B RIAN D .  B EASLEY 
PRESBYTERIAN COLLEGE 
CLINTON, SC 29325  
bbeasley@mail.presby.edu 
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